找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Foundations; Taeho Jo Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature

[復制鏈接]
查看: 31052|回復: 56
樓主
發(fā)表于 2025-3-21 19:12:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Foundations
編輯Taeho Jo
視頻videohttp://file.papertrans.cn/265/264575/264575.mp4
概述Provides a conceptual understanding of deep learning algorithms.Presents ways of modifying existing machine learning algorithms into deep learning algorithms for further analysis.Details how deep lear
圖書封面Titlebook: Deep Learning Foundations;  Taeho Jo Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
描述This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensemble learning, as the preparation for studying deep learning algorithms. The second part deals with modification of existing machine learning algorithms into deep learning algorithms. The book’s third part deals with deep neural networks, such as Multiple Perceptron, Recurrent Networks, Restricted Boltzmann Machine, and Convolutionary Neural Networks. The last part provides deep learning techniques that are specialized for text mining tasks. The book is relevant for researchers, academics, students, and professionals in machine learning.
出版日期Book 2023
關鍵詞Deep Learning; Deep K nearest Neighbor; Deep Na?ve Bayes; Deep Support Vector Machine; Multiple Layer Pe
版次1
doihttps://doi.org/10.1007/978-3-031-32879-4
isbn_softcover978-3-031-32881-7
isbn_ebook978-3-031-32879-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning Foundations影響因子(影響力)




書目名稱Deep Learning Foundations影響因子(影響力)學科排名




書目名稱Deep Learning Foundations網(wǎng)絡公開度




書目名稱Deep Learning Foundations網(wǎng)絡公開度學科排名




書目名稱Deep Learning Foundations被引頻次




書目名稱Deep Learning Foundations被引頻次學科排名




書目名稱Deep Learning Foundations年度引用




書目名稱Deep Learning Foundations年度引用學科排名




書目名稱Deep Learning Foundations讀者反饋




書目名稱Deep Learning Foundations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:07:16 | 只看該作者
Supervised Learningameters are optimized for minimizing the error between the desired output and the computed one. In the supervised learning process, the training examples, each of which is labeled with its own target output, and the given learning algorithm are trained with them. Supervised learning algorithms are a
板凳
發(fā)表于 2025-3-22 01:17:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:28:27 | 只看該作者
Ensemble Learninging the problems such as classification, regression, and clustering, more reliably by combining multiple machine learning algorithms with each other. The typical schemes of ensemble learning are the voting which is the process of deciding the final answer by considering ones of multiple machine lear
5#
發(fā)表于 2025-3-22 10:55:58 | 只看該作者
6#
發(fā)表于 2025-3-22 16:06:03 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:12 | 只看該作者
8#
發(fā)表于 2025-3-23 00:13:45 | 只看該作者
Deep Linear Classifierfines its dual parallel hyperplanes with the maximal margin between them as the classification boundary. Even if the SVM is viewed as a deep learning algorithm, compared with the simple linear classifier, by itself, it may be modified into its further deep versions by attaching the input encoding an
9#
發(fā)表于 2025-3-23 02:38:07 | 只看該作者
Multiple Layer Perceptrony Rosenblatt in the 1950s. In the architecture of MLP, there are three layers: the input layer, the hidden layer, and the output layer. A layer is connected to its next layer with the feedforward direction, and the weights are updated in its learning process in the backward direction. This chapter i
10#
發(fā)表于 2025-3-23 08:18:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 17:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
内黄县| 循化| 故城县| 湖州市| 隆化县| 论坛| 海宁市| 民勤县| 特克斯县| 平和县| 漠河县| 龙里县| 长泰县| 西乌珠穆沁旗| 铜鼓县| 泗水县| 惠安县| 庆元县| 涟水县| 凤山市| 汉川市| 兴安县| 望江县| 汪清县| 高台县| 利川市| 黄浦区| 临猗县| 渝中区| 通江县| 合肥市| 九寨沟县| 荥阳市| 邯郸县| 南召县| 乌拉特前旗| 开阳县| 呼玛县| 洱源县| 高邮市| 尉氏县|