找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Based Speech Quality Prediction; Gabriel Mittag Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: 萬靈藥
11#
發(fā)表于 2025-3-23 10:32:00 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:50 | 只看該作者
978-3-030-91481-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
14#
發(fā)表于 2025-3-24 01:51:42 | 只看該作者
Gabriel MittagPresents how to apply deep learning methods for the task of speech quality prediction.Includes a model that outperforms traditional speech quality models.Presents an in-depth analysis and comparison o
15#
發(fā)表于 2025-3-24 03:37:58 | 只看該作者
T-Labs Series in Telecommunication Serviceshttp://image.papertrans.cn/d/image/264573.jpg
16#
發(fā)表于 2025-3-24 06:57:20 | 只看該作者
17#
發(fā)表于 2025-3-24 14:28:43 | 只看該作者
Bias-Aware Loss for Training from Multiple Datasets,nted that considers the biases between different datasets by learning the biases automatically during training. The calculated loss is adjusted in a way that errors, which only occur due to dataset-specific biases, are not considered when optimising the weights of the quality prediction neural netwo
18#
發(fā)表于 2025-3-24 18:46:27 | 只看該作者
19#
發(fā)表于 2025-3-24 20:10:01 | 只看該作者
Quality Assessment of Transmitted Speech,. Then the terms “speech quality” and “speech quality dimensions” are introduced, and subjective speech quality assessment methods are discussed. Afterwards, a review of instrumental speech quality prediction models is given. At first, traditional speech quality models are presented. Then machine le
20#
發(fā)表于 2025-3-25 03:10:08 | 只看該作者
Neural Network Architectures for Speech Quality Prediction,ures are divided into three different stages. First, a frame-based neural network calculates features for each time step. The resulting feature sequence is then modelled by a time-dependency neural network. Finally, a pooling stage aggregates the sequence of features over time to estimate the overal
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平阴县| 慈溪市| 阜南县| 大洼县| 澄城县| 涟水县| 金坛市| 富裕县| 澄城县| 新余市| 南汇区| 乌拉特中旗| 巴青县| 罗山县| 吴川市| 安吉县| 崇文区| 浪卡子县| 开平市| 仙游县| 佛山市| 兴化市| 金平| 杭州市| 黎平县| 富阳市| 巫溪县| 铁岭市| 黄山市| 尼玛县| 喀喇| 仪征市| 曲周县| 甘洛县| 广灵县| 揭东县| 伽师县| 凤阳县| 山东省| 花垣县| 凯里市|