找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Approaches to Text Production; Shashi Narayan,Claire Gardent Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 助手
11#
發(fā)表于 2025-3-23 13:08:51 | 只看該作者
Design and Use of Assistive Technologyned with (i.e., text production from data, from text, and from meaning representations) and we summarise the content of each chapter. We also indicate what is not covered and introduce some notational conventions.
12#
發(fā)表于 2025-3-23 14:26:40 | 只看該作者
13#
發(fā)表于 2025-3-23 20:36:51 | 只看該作者
https://doi.org/10.1007/978-3-540-74111-4pipeline of modules, each performing a specific subtask. The neural approach is very different from the pre-neural approach in that it provides a uniform (end-to-end) framework for text production. First the input is projected on a continuous representation (representation learning), and then, the g
14#
發(fā)表于 2025-3-23 23:35:05 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:37 | 只看該作者
Synthesis Lectures on Human Language Technologieshttp://image.papertrans.cn/d/image/264571.jpg
18#
發(fā)表于 2025-3-24 15:57:00 | 只看該作者
19#
發(fā)表于 2025-3-24 19:52:10 | 只看該作者
Pre-Neural Approachesltiple, interacting factors and differ depending on the NLG task they address. More specifically, three main types of pre-neural NLG architectures can be distinguished depending on whether the task is to generate from data from meaning representations or text.
20#
發(fā)表于 2025-3-24 23:19:17 | 只看該作者
Generating Better Textome data), is first encoded into a continuous representation. This representation is then input to the decoder, which predicts output words, one step at a time, conditioned both on the input representation and on the previously predicted words.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 高台县| 安新县| 边坝县| 普洱| 广南县| 华宁县| 河北区| 绥滨县| 日照市| 岱山县| 平遥县| 神木县| 华宁县| 上栗县| 广州市| 洮南市| 红桥区| 安陆市| 利津县| 湘西| 武宁县| 凤山县| 萍乡市| 大理市| 固始县| 手游| 南城县| 纳雍县| 乌兰浩特市| 荣昌县| 长兴县| 同德县| 锦州市| 万盛区| 图们市| 永嘉县| 罗定市| 邛崃市| 恩平市| 卢氏县|