找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Approaches for Spoken and Natural Language Processing; Virender Kadyan,Amitoj Singh,Laith Abualigah Book 2021 The Editor(s)

[復(fù)制鏈接]
樓主: HAG
21#
發(fā)表于 2025-3-25 05:53:30 | 只看該作者
Noise-Robust Gender Classification System Through Optimal Selection of Acoustic Features,resence of loud backgrounds as well as their evaluations and possible impacts on practical efficiency. Finally, three semi-supervised classification algorithms including random forest, support vector machine (SVM), and multi-layer perceptron (MLP) have been experimented resulting in the increased pe
22#
發(fā)表于 2025-3-25 09:26:06 | 只看該作者
https://doi.org/10.1007/978-3-642-70926-5have become interested in analyzing people’s feelings through social networks, especially in political and economic domains. The main task is to classify the level of messages or tweets to their polarity. In this research, we will look at the most important approaches used in sentiment analysis and
23#
發(fā)表于 2025-3-25 14:07:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:37 | 只看該作者
Junjie Li,Shuo Tian,Yuanhui LiuC) have been recorded with modest changes using hidden Markov models (HMM). The selection of optimal features was made possible by increasing child data through adaptation measures on adult data, which has allowed for the examination of new features under mismatched conditions resulting in an overal
25#
發(fā)表于 2025-3-25 20:02:43 | 只看該作者
26#
發(fā)表于 2025-3-26 01:45:35 | 只看該作者
Design and Testing of Reversible Logicion technique. Analysis of this chapter indicates that classical feature extraction techniques of cepstral domain like Mel Frequency Cepstral Coefficients (MFCC) are the most popular and better in performance for speech and speaker recognition tasks. This chapter provides the implementation details
27#
發(fā)表于 2025-3-26 08:04:14 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:12 | 只看該作者
29#
發(fā)表于 2025-3-26 16:19:45 | 只看該作者
Book 2021 techniques can be applied to improve NLP and speech processing applications;.Presents and escalates the research trends and future direction of language and speech processing;.Includes theoretical research, experimental results, and applications of deep learning..
30#
發(fā)表于 2025-3-26 19:46:23 | 只看該作者
1860-4862 escalates the research trends and future direction of language and speech processing;.Includes theoretical research, experimental results, and applications of deep learning..978-3-030-79780-5978-3-030-79778-2Series ISSN 1860-4862 Series E-ISSN 1860-4870
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天台县| 县级市| 定日县| 晴隆县| 应用必备| 商都县| 营山县| 玉溪市| 沾化县| 樟树市| 马关县| 从江县| 阿克| 诸暨市| 沂水县| 句容市| 原平市| 察哈| 白河县| 丰顺县| 台北县| 金沙县| 鹤庆县| 天长市| 江陵县| 常熟市| 无锡市| 翁源县| 德令哈市| 邯郸县| 合阳县| 巴马| 万源市| 吉安县| 松滋市| 炎陵县| 屏东市| 台北县| 扶绥县| 曲沃县| 西峡县|