找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep In-memory Architectures for Machine Learning; Mingu Kang,Sujan Gonugondla,Naresh R. Shanbhag Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 47503|回復(fù): 43
樓主
發(fā)表于 2025-3-21 20:08:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep In-memory Architectures for Machine Learning
編輯Mingu Kang,Sujan Gonugondla,Naresh R. Shanbhag
視頻videohttp://file.papertrans.cn/265/264559/264559.mp4
概述Describes deep in-memory architectures for AI systems from first principles, covering both circuit design and architectures.Discusses how DIMAs pushes the limits of energy-delay product of decision-ma
圖書封面Titlebook: Deep In-memory Architectures for Machine Learning;  Mingu Kang,Sujan Gonugondla,Naresh R. Shanbhag Book 2020 Springer Nature Switzerland AG
描述.This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware..
出版日期Book 2020
關(guān)鍵詞machine learning in hardware; analog in-memory architectures; Deep In-memory Architecture; Shannon-insp
版次1
doihttps://doi.org/10.1007/978-3-030-35971-3
isbn_softcover978-3-030-35973-7
isbn_ebook978-3-030-35971-3
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep In-memory Architectures for Machine Learning影響因子(影響力)




書目名稱Deep In-memory Architectures for Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Deep In-memory Architectures for Machine Learning網(wǎng)絡(luò)公開度




書目名稱Deep In-memory Architectures for Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep In-memory Architectures for Machine Learning被引頻次




書目名稱Deep In-memory Architectures for Machine Learning被引頻次學(xué)科排名




書目名稱Deep In-memory Architectures for Machine Learning年度引用




書目名稱Deep In-memory Architectures for Machine Learning年度引用學(xué)科排名




書目名稱Deep In-memory Architectures for Machine Learning讀者反饋




書目名稱Deep In-memory Architectures for Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:25:49 | 只看該作者
DIMA Prototype Integrated Circuits,is a multi-functional DIMA that implements four different machine learning algorithms—the support vector machine (SVM), template matching (TM), .-nearest neighbor (.-NN), and matched filter (MF), thereby demonstrating DIMA’s versatility. The second IC implements the random forest (RF) algorithm whic
地板
發(fā)表于 2025-3-22 06:40:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:45:18 | 只看該作者
PROMISE: A DIMA-Based Accelerator,nts a DIMA-based accelerator called PROMISE, which realizes a high level of programmability for diverse ML algorithms without noticeably losing the efficiency of mixed-signal accelerators for specific ML algorithms. PROMISE exposes instruction set mechanisms that allow software control over energy-v
7#
發(fā)表于 2025-3-22 17:42:43 | 只看該作者
8#
發(fā)表于 2025-3-22 23:39:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:33:38 | 只看該作者
Hasso Plattner,Christoph Meinel,Larry Leiferficiency of mixed-signal accelerators for specific ML algorithms. PROMISE exposes instruction set mechanisms that allow software control over energy-vs-accuracy trade-offs, and supports compilation of high-level languages down to the hardware.
10#
發(fā)表于 2025-3-23 08:30:57 | 只看該作者
Book 2020y trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 03:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜梁县| 衡阳县| 白玉县| 武威市| 铜陵市| 青海省| 札达县| 郓城县| 阿拉善左旗| 青冈县| 瓮安县| 获嘉县| 石狮市| 灵武市| 无为县| 广元市| 离岛区| 绥棱县| 内黄县| 孟村| 河源市| 乳源| 元氏县| 江阴市| 蒙山县| 连云港市| 彝良县| 北川| 禄劝| 新营市| 安新县| 灵石县| 阜阳市| 静安区| 广宗县| 阜宁县| 石门县| 清河县| 明水县| 林口县| 扬中市|