找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復(fù)制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 11:01:53 | 只看該作者
Improved Heatmap-Based Landmark Detectionation of heart function. The location of the prosthesis’ sutures is critical. Obtaining and studying them during the procedure is a valuable learning experience for new surgeons. This paper proposes a landmark detection network for detecting sutures in endoscopic pictures, which solves the problem o
12#
發(fā)表于 2025-3-23 17:11:33 | 只看該作者
Cross-Domain Landmarks Detection in?Mitral Regurgitationis a complex minimally invasive procedure which is facing the problem of data availability and data privacy. Therefore, the simulation cases are widely used to form surgery training and planning. However, the cross-domain gap may affect the performance significantly as Deep Learning methods rely hea
13#
發(fā)表于 2025-3-23 19:56:40 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:25 | 只看該作者
Semi-supervised Surgical Tool Detection Based on Highly Confident Pseudo Labeling and Strong Augmentthods heavily rely on the volume of labeled data. However, manually annotating location of tools in surgical videos is quite time-consuming. To overcome this problem, we propose a semi-supervised pipeline for surgical tool detection, using strategies of highly confident pseudo labeling and strong au
15#
發(fā)表于 2025-3-24 06:11:08 | 只看該作者
One-Shot Learning for Landmarks Detectionlems but it usually requires a large number of the annotated datasets for the training stage. In addition, traditional methods usually fail for the landmark detection of fine objects. In this paper, we tackle the issue of automatic landmark annotation in 3D volumetric images from a single example ba
16#
發(fā)表于 2025-3-24 09:23:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:12:09 | 只看該作者
Ultrasound Variational Style Transfer to Generate Images Beyond the Observed Domain latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmentation and domain adaptation during training improves the performance of the resulting deep learning models, even when tested within the observed domain.
18#
發(fā)表于 2025-3-24 15:20:13 | 只看該作者
https://doi.org/10.1007/978-3-662-43839-8e variables. We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation and style-content disentanglement. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.
19#
發(fā)表于 2025-3-24 21:28:04 | 只看該作者
20#
發(fā)表于 2025-3-25 02:20:25 | 只看該作者
https://doi.org/10.1007/978-3-662-43839-8y distributions within each masked region using a novel Variational Autoencoder (VAE) based hierarchical probabilistic network. Our approach then generates a diverse set of inpainted images, all of which appear visually appropriate.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连城县| 大新县| 乌鲁木齐市| 永靖县| 临颍县| 垫江县| 怀来县| 桐庐县| 明光市| 浮山县| 景洪市| 邵阳县| 方山县| 和平区| 玉溪市| 新乡县| 长子县| 巴青县| 临邑县| 迁西县| 洛隆县| 辽源市| 潞西市| 广宁县| 女性| 唐河县| 华亭县| 台山市| 沧州市| 长葛市| 扶风县| 嵊泗县| 定西市| 福鼎市| 襄城县| 莱州市| 定安县| 思南县| 城市| 石家庄市| 增城市|