找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Deep Generative Models; Second MICCAI Worksh Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: GOLF
41#
發(fā)表于 2025-3-28 15:25:47 | 只看該作者
Cross Attention Transformers for?Multi-modal Unsupervised Whole-Body PET Anomaly Detectionthe transformer via cross-attention, i.e. supplying anatomical reference information from paired CT images to aid the PET anomaly detection task. Using 83 whole-body PET/CT samples containing various cancer types, we show that our anomaly detection method is robust and capable of achieving accurate
42#
發(fā)表于 2025-3-28 18:59:02 | 只看該作者
Interpreting Latent Spaces of?Generative Models for?Medical Images Using Unsupervised Methodsize. Furthermore, the directions show that the generative models capture 3D structure despite being presented only with 2D data. The results show that unsupervised methods to discover interpretable directions in GANs generalize to VAEs and can be applied to medical images. This opens a wide array of
43#
發(fā)表于 2025-3-28 23:10:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:09 | 只看該作者
45#
發(fā)表于 2025-3-29 09:28:13 | 只看該作者
Flow-Based Visual Quality Enhancer for?Super-Resolution Magnetic Resonance Spectroscopic Imagings clinical applications. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but the super-resolved images are often blurry compared to the experimentally-acquired high-resolution images. Attempts have been made with the generative ad
46#
發(fā)表于 2025-3-29 11:33:41 | 只看該作者
Cross Attention Transformers for?Multi-modal Unsupervised Whole-Body PET Anomaly Detectione, stage and predict the evolution of cancer. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models; these models learn a healthy representation of tissue and detect cancer by predicting deviations from healthy appearanc
47#
發(fā)表于 2025-3-29 18:02:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:27:15 | 只看該作者
49#
發(fā)表于 2025-3-30 03:27:20 | 只看該作者
Learning Generative Factors of?EEG Data with?Variational Auto-Encodersna of interest. We address this challenge by applying the framework of variational auto-encoders to 1) classify multiple pathologies and 2) recover the neurological mechanisms of those pathologies in a data-driven manner. Our framework learns generative factors of data related to pathologies. We pro
50#
發(fā)表于 2025-3-30 06:39:03 | 只看該作者
An Image Feature Mapping Model for?Continuous Longitudinal Data Completion and?Generation of?Synthetlete, or have inconsistencies between observations. Thus, we propose a generative model that not only produces continuous trajectories of fully synthetic patient images, but also imputes missing data in existing trajectories, by estimating realistic progression over time. Our generative model is tra
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耒阳市| 大邑县| 南溪县| 临澧县| 宁化县| 白银市| 获嘉县| 宝兴县| 通城县| 邵东县| 邢台县| 邹城市| 赣州市| 兴城市| 石门县| 公主岭市| 余江县| 井研县| 永吉县| 宁武县| 手游| 南木林县| 驻马店市| 逊克县| 鄂温| 昌宁县| 灵寿县| 江北区| 马公市| 海城市| 儋州市| 乌兰浩特市| 南宫市| 汪清县| 虎林市| 合山市| 基隆市| 东阿县| 汉源县| 镇雄县| 江油市|