找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Belief Nets in C++ and CUDA C: Volume 1; Restricted Boltzmann Timothy Masters Book 2018 Timothy Masters 2018 C++.CUDA C.deep learning.

[復(fù)制鏈接]
查看: 36767|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:55:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1
副標(biāo)題Restricted Boltzmann
編輯Timothy Masters
視頻videohttp://file.papertrans.cn/265/264522/264522.mp4
概述Master deep learning with C++ and CUDA C.Utilize restricted Boltzmann machines.Work with supervised feedforward networks
圖書封面Titlebook: Deep Belief Nets in C++ and CUDA C: Volume 1; Restricted Boltzmann Timothy Masters Book 2018 Timothy Masters 2018 C++.CUDA C.deep learning.
描述Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.?.The first of three in a series on C++ and CUDA C deep learning and belief nets, .Deep Belief Nets in C++ and CUDA C: Volume 1. shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting.?.All theroutines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines.?.What You Will Learn.Employ deep learning using C++ and CUDA C.Work with supervised feedforward networks?.Implement restricted Boltzm
出版日期Book 2018
關(guān)鍵詞C++; CUDA C; deep learning; Boltzmann; machine; AI; artificial intelligence; numerical; algorithms; CV; comput
版次1
doihttps://doi.org/10.1007/978-1-4842-3591-1
isbn_softcover978-1-4842-3590-4
isbn_ebook978-1-4842-3591-1
copyrightTimothy Masters 2018
The information of publication is updating

書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1影響因子(影響力)




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1影響因子(影響力)學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1網(wǎng)絡(luò)公開度




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1被引頻次




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1被引頻次學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1年度引用




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1年度引用學(xué)科排名




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1讀者反饋




書目名稱Deep Belief Nets in C++ and CUDA C: Volume 1讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:22 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:27 | 只看該作者
Restricted Boltzmann Machines,beat. Also, the numerous technical papers by Geoffrey Hinton cover specific aspects of RMBs in glorious detail. Finally, deeplearning.net is an incredible resource. Because of this wealth of material, I will avoid unnecessary duplication. This chapter will be limited to an outline of the essentials
5#
發(fā)表于 2025-3-22 10:46:05 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:37 | 只看該作者
al building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel pro
7#
發(fā)表于 2025-3-22 17:33:38 | 只看該作者
8#
發(fā)表于 2025-3-22 23:47:07 | 只看該作者
2. Notions from homological algebra,ible resource. Because of this wealth of material, I will avoid unnecessary duplication. This chapter will be limited to an outline of the essentials of RBMs, in other words, the information necessary to understand and use the programs presented here.
9#
發(fā)表于 2025-3-23 04:19:15 | 只看該作者
Supervised Feedforward Networks,h patterns have been found does training switch to supervised mode. However, because supervised training algorithms are easier to understand than the usual unsupervised algorithms, you will begin your study of deep belief nets with supervised training.
10#
發(fā)表于 2025-3-23 09:22:04 | 只看該作者
Restricted Boltzmann Machines,ible resource. Because of this wealth of material, I will avoid unnecessary duplication. This chapter will be limited to an outline of the essentials of RBMs, in other words, the information necessary to understand and use the programs presented here.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民乐县| 辰溪县| 黄平县| 海口市| 乳源| 华宁县| 河北区| 淮滨县| 兖州市| 铜梁县| 洛宁县| 长子县| 屯昌县| 山阴县| 宜君县| 舒城县| 紫阳县| 越西县| 留坝县| 霍邱县| 闽侯县| 南昌县| 镇原县| 巨野县| 子洲县| 紫云| 凤台县| 宝山区| 泰来县| 永福县| 麻阳| 册亨县| 荃湾区| 建德市| 沅江市| 富宁县| 清水河县| 贞丰县| 新田县| 翁源县| 宣威市|