找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho; Sarah Vluymans Book 2019 Springer Na

[復(fù)制鏈接]
查看: 27118|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:03:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho
編輯Sarah Vluymans
視頻videohttp://file.papertrans.cn/264/263975/263975.mp4
概述Takes the research on ordered weighted average (OWA) fuzzy rough sets to the next level.Provides clear guidelines on how to use them.Expands the application to e.g. imbalanced, semi-supervised, multi-
叢書(shū)名稱(chēng)Studies in Computational Intelligence
圖書(shū)封面Titlebook: Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho;  Sarah Vluymans Book 2019 Springer Na
描述This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning.?.??.The intended readership of this book includes anyone interested in learning more about fuzzy rough set theory and how to use it in practical machine learning contexts. Although the core audience chiefly consists of mathematicians, computer scientists and engineers, the content will also be interesting and accessible to students and professionals from a range of other fields.? ?.
出版日期Book 2019
關(guān)鍵詞Computational Intelligence; OWA; Ordered Weighted Average; Classification; Multi-Instance Learning; Multi
版次1
doihttps://doi.org/10.1007/978-3-030-04663-7
isbn_ebook978-3-030-04663-7Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho影響因子(影響力)




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho被引頻次




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho年度引用




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho年度引用學(xué)科排名




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho讀者反饋




書(shū)目名稱(chēng)Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Metho讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:30:16 | 只看該作者
Udoka Okonta,Amin Hosseinian-Farphenomenon is addressed by the introduction of semi-supervised classification, in which a prediction model is derived from a training set consisting of both labelled and unlabelled data. Information in both the labelled and unlabelled parts of the training set can be used in the classification process.
地板
發(fā)表于 2025-3-22 06:48:05 | 只看該作者
5#
發(fā)表于 2025-3-22 12:47:23 | 只看該作者
CSR, Sustainability, Ethics & Governancequence, the recognition of minority instances is hampered. Since minority classes are usually the ones of interest, custom techniques are required to deal with such data skewness. We study them in this chapter.
6#
發(fā)表于 2025-3-22 15:10:43 | 只看該作者
7#
發(fā)表于 2025-3-22 18:15:47 | 只看該作者
Matthew D. Wood,Daniel A. HunterGenerally put, this book is on fuzzy rough set based methods for machine learning. We develop classification algorithms based on fuzzy rough set theory for several types of data relevant to real-world applications.
8#
發(fā)表于 2025-3-22 21:42:51 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:09 | 只看該作者
Matthew D. Wood,Daniel A. HunterAs noted in Chap.?1, the traditional fuzzy rough set model is intrinsically sensitive to noise and outliers in the data. One generalization to deal with this issue in an intuitive way is the ordered weighted average (OWA) based fuzzy rough set model, that replaces the strict minimum and maximum operators by more elaborate OWA aggregations.
10#
發(fā)表于 2025-3-23 09:27:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄河市| 奇台县| 平南县| 望都县| 卢湾区| 米易县| 曲沃县| 鹤山市| 张家界市| 昌乐县| 弋阳县| 项城市| 灯塔市| 吉木萨尔县| 新邵县| 靖宇县| 依安县| 千阳县| 达孜县| 焦作市| 辉南县| 资溪县| 洛隆县| 武夷山市| 沙河市| 德阳市| 富蕴县| 天门市| 佛教| 兖州市| 庆元县| 宁南县| 齐齐哈尔市| 武城县| 安康市| 繁峙县| 柘城县| 柯坪县| 吴江市| 衡阳县| 文山县|