找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: De Rham Cohomology of Differential Modules on Algebraic Varieties; Yves André,Francesco Baldassarri Book 20011st edition Springer Basel AG

[復(fù)制鏈接]
查看: 49813|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:20:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties
編輯Yves André,Francesco Baldassarri
視頻videohttp://file.papertrans.cn/264/263891/263891.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: De Rham Cohomology of Differential Modules on Algebraic Varieties;  Yves André,Francesco Baldassarri Book 20011st edition Springer Basel AG
描述This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ- entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case
出版日期Book 20011st edition
關(guān)鍵詞Dimension; Divisor; Geometrie; Grad; algebra; algebraic geometry; algebraic varieties
版次1
doihttps://doi.org/10.1007/978-3-0348-8336-8
isbn_ebook978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 2001
The information of publication is updating

書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties影響因子(影響力)




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties影響因子(影響力)學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties網(wǎng)絡(luò)公開度




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties被引頻次




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties被引頻次學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties年度引用




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties年度引用學(xué)科排名




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties讀者反饋




書目名稱De Rham Cohomology of Differential Modules on Algebraic Varieties讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:17:21 | 只看該作者
0743-1643 t of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
地板
發(fā)表于 2025-3-22 06:36:32 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:33 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:18 | 只看該作者
7#
發(fā)表于 2025-3-22 19:40:26 | 只看該作者
De Rham Cohomology of Differential Modules on Algebraic Varieties978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-22 22:16:08 | 只看該作者
https://doi.org/10.1007/978-3-031-31801-6sult is a particularly simple proof of the Grothendieck-Deligne comparison theorem (algebraic versus complex-analytic De Rham cohomology with regular coefficients [G1], [De]). As a corollary, we obtain an elementary proof of Riemann’s existence theorem for coverings, in higher dimensions.
9#
發(fā)表于 2025-3-23 03:23:57 | 只看該作者
https://doi.org/10.1007/978-3-031-31801-6The central topic of this chapter is the notion of regularity in several variables. For an algebraic integrable connection ? on the complement of a divisor Z in an algebraic variety.the notion of regularity along Z may be defined, or characterized, in at least four different algebraic ways:
10#
發(fā)表于 2025-3-23 07:27:09 | 只看該作者
https://doi.org/10.1007/978-3-031-31801-6In this chapter, we tackle the study of irregularity in several variables. This domain is far less explored than the island of regularity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌宁县| 洮南市| 勃利县| 呈贡县| 惠东县| 鄯善县| 乐都县| 仪征市| 临泽县| 崇阳县| 长岭县| 唐海县| 周宁县| 突泉县| 洛扎县| 仁化县| 定结县| 咸丰县| 宜阳县| 崇信县| 宜良县| 探索| 剑川县| 同心县| 辽阳县| 宜城市| 宿松县| 宁陕县| 扎鲁特旗| 灌南县| 内黄县| 屯门区| 仲巴县| 康平县| 公安县| 石狮市| 宣城市| 叙永县| 阜康市| 隆林| 永宁县|