找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Databases Theory and Applications; 32nd Australasian Da Miao Qiao,Gottfried Vossen,Lei Li Conference proceedings 2021 Springer Nature Switz

[復(fù)制鏈接]
樓主: 無限
21#
發(fā)表于 2025-3-25 06:28:33 | 只看該作者
Adaptive Fault Diagnosis for Data Replication Systems,of the data replication environment, the fault diagnostic effort is both tedious and laborious. This paper proposes an approach to fault diagnosis of the data replication software through deep reinforcement learning. Empirical results show that the new method can identify and deduce the software faults quickly with high accuracy.
22#
發(fā)表于 2025-3-25 10:37:44 | 只看該作者
The Stability Conditions of Salt Minerals,n hypergraph, sparse learning and adaptive graph are integrated into a framework. Finally, the suitable graph is obtained, which is inputted into GCN for semi-supervised learning. The experimental results of multi-type datasets show that our method is superior to other comparison algorithms in classification tasks.
23#
發(fā)表于 2025-3-25 15:22:50 | 只看該作者
24#
發(fā)表于 2025-3-25 19:20:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:48:06 | 只看該作者
Intention Recognition from Spatio-Temporal Representation of EEG Signals,ation and classification of signal features for specific thinking activities. Inspired by the structure and function of the human brain, we construct a neural computing model to explore the critical issues in the representation and real-time recognition of the state of specific thinking activities.
26#
發(fā)表于 2025-3-26 03:12:41 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:32 | 只看該作者
28#
發(fā)表于 2025-3-26 10:22:26 | 只看該作者
Contextual Bandit Learning for Activity-Aware Things-of-Interest Recommendation in an Assisted Livipresent a Reminder Care System to help Alzheimer patients live safely and independently in their homes. The proposed recommendation system is formulated based on a contextual bandit approach to tackle dynamicity in human activity patterns for accurate recommendations meeting user needs without their
29#
發(fā)表于 2025-3-26 16:37:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:31:38 | 只看該作者
Experimental Analysis of Locality Sensitive Hashing Techniques for High-Dimensional Approximate Nea are known to suffer from the notorious . for high-dimensional data. Approximate searching techniques sacrifice some accuracy while returning . results for faster performance. Locality Sensitive Hashing (LSH) is a popular technique for finding approximate nearest neighbors. There are two main benefi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延川县| 通州区| 萨嘎县| 台中市| 油尖旺区| 台湾省| 隆化县| 洪湖市| 丰城市| 无极县| 利川市| 汪清县| 天柱县| 威海市| 板桥市| 大庆市| 资讯 | 青河县| 乐山市| 新竹市| 平安县| 武山县| 金山区| 六盘水市| 长兴县| 巩义市| 东乌| 安乡县| 佛山市| 郧西县| 巫溪县| 岳西县| 土默特右旗| 上蔡县| 门源| 牟定县| 南和县| 邮箱| 海城市| 海伦市| 南澳县|