找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: TEMPO
21#
發(fā)表于 2025-3-25 05:11:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:13 | 只看該作者
Partial Solutions for Patient Safetyletion methods are known to be primarily knowledge embedding based models, which are broadly classified as translational models and neural network models. However, both kinds of models are single-task based models and hence fail to capture the underlying inter-structural relationships that are inher
23#
發(fā)表于 2025-3-25 12:47:33 | 只看該作者
Multi-job Merging Framework and Scheduling Optimization for Apache Flinkighlighted as follows: (1) the framework enables Flink to support multi-job collection, merging and dynamic tuning of the execution sequence, and the selection of these functions are customizable. (2) with the multi-job merging and optimization, the total running time can be reduced by 31% compared
24#
發(fā)表于 2025-3-25 19:07:06 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:27 | 只看該作者
vRaft: Accelerating the Distributed Consensus Under Virtualized Environments followers to accelerate both the write and the read requests processing in a virtualized cloud environment, without affecting the linearizability guarantee of Raft. The experiments based on the virtual nodes in Tencent Cloud indicate that vRaft improves the throughput by up?to 64.2%, reduces averag
26#
發(fā)表于 2025-3-26 03:45:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:18:18 | 只看該作者
Label Contrastive Coding Based Graph Neural Network for Graph Classificationc label memory bank and a momentum updated encoder. Our extensive evaluations with eight benchmark graph datasets demonstrate that LCGNN can outperform state-of-the-art graph classification models. Experimental results also verify that LCGNN can achieve competitive performance with less training dat
28#
發(fā)表于 2025-3-26 11:57:36 | 只看該作者
Keyword-Centric Community Search over Large Heterogeneous Information Networks design an advanced algorithm .-core using a new method of traversing the search space based on trees to accelerate the searching procedure. For online queries, we optimize the approach with a new index to handle the online queries of community search over HINs. Extensive experiments on HINs are con
29#
發(fā)表于 2025-3-26 15:01:36 | 只看該作者
KGSynNet: A Novel Entity Synonyms Discovery Framework with Knowledge Graphedge information into their semantic features. We conduct extensive experiments to demonstrate the effectiveness of our . in leveraging the knowledge graph. The experimental results show that the . improves the state-of-the-art methods by 14.7% in terms of hits@3 in the offline evaluation and outper
30#
發(fā)表于 2025-3-26 18:17:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永济市| 江华| 赣州市| 三原县| 大埔区| 屯留县| 双鸭山市| 酉阳| 岚皋县| 华阴市| 隆化县| 天气| 田阳县| 沾益县| 甘孜县| 深圳市| 莒南县| 宿松县| 林甸县| 苏尼特左旗| 福泉市| 平果县| 大冶市| 南开区| 奇台县| 垦利县| 桂东县| 侯马市| 勐海县| 台北市| 安西县| 郎溪县| 鄂托克旗| 印江| 信宜市| 农安县| 宁陕县| 平泉县| 图木舒克市| 理塘县| 天门市|