找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: TEMPO
21#
發(fā)表于 2025-3-25 05:11:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:13 | 只看該作者
Partial Solutions for Patient Safetyletion methods are known to be primarily knowledge embedding based models, which are broadly classified as translational models and neural network models. However, both kinds of models are single-task based models and hence fail to capture the underlying inter-structural relationships that are inher
23#
發(fā)表于 2025-3-25 12:47:33 | 只看該作者
Multi-job Merging Framework and Scheduling Optimization for Apache Flinkighlighted as follows: (1) the framework enables Flink to support multi-job collection, merging and dynamic tuning of the execution sequence, and the selection of these functions are customizable. (2) with the multi-job merging and optimization, the total running time can be reduced by 31% compared
24#
發(fā)表于 2025-3-25 19:07:06 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:27 | 只看該作者
vRaft: Accelerating the Distributed Consensus Under Virtualized Environments followers to accelerate both the write and the read requests processing in a virtualized cloud environment, without affecting the linearizability guarantee of Raft. The experiments based on the virtual nodes in Tencent Cloud indicate that vRaft improves the throughput by up?to 64.2%, reduces averag
26#
發(fā)表于 2025-3-26 03:45:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:18:18 | 只看該作者
Label Contrastive Coding Based Graph Neural Network for Graph Classificationc label memory bank and a momentum updated encoder. Our extensive evaluations with eight benchmark graph datasets demonstrate that LCGNN can outperform state-of-the-art graph classification models. Experimental results also verify that LCGNN can achieve competitive performance with less training dat
28#
發(fā)表于 2025-3-26 11:57:36 | 只看該作者
Keyword-Centric Community Search over Large Heterogeneous Information Networks design an advanced algorithm .-core using a new method of traversing the search space based on trees to accelerate the searching procedure. For online queries, we optimize the approach with a new index to handle the online queries of community search over HINs. Extensive experiments on HINs are con
29#
發(fā)表于 2025-3-26 15:01:36 | 只看該作者
KGSynNet: A Novel Entity Synonyms Discovery Framework with Knowledge Graphedge information into their semantic features. We conduct extensive experiments to demonstrate the effectiveness of our . in leveraging the knowledge graph. The experimental results show that the . improves the state-of-the-art methods by 14.7% in terms of hits@3 in the offline evaluation and outper
30#
發(fā)表于 2025-3-26 18:17:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奎屯市| 南陵县| 永济市| 德江县| 望奎县| 广州市| 香格里拉县| 南陵县| 中江县| 常宁市| 南宫市| 盐源县| 石台县| 蒙自县| 安庆市| 中西区| 类乌齐县| 都江堰市| 盐池县| 鄂伦春自治旗| 玛多县| 衡山县| 渝北区| 台南市| 婺源县| 达日县| 天水市| 建宁县| 麻栗坡县| 保定市| 枞阳县| 芒康县| 綦江县| 南丰县| 晋江市| 松潘县| 晴隆县| 吴桥县| 克山县| 松原市| 交城县|