找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: 使入伍
41#
發(fā)表于 2025-3-28 15:52:13 | 只看該作者
KRec-C2: A Knowledge Graph Enhanced Recommendation with?Context Awareness and?Contrastive Learningpplications: high-quality knowledge graphs and modeling user-item relationships. However, existing methods try to solve the above challenges by adopting unified relational rules and simple node aggregation, which cannot cope with complex structured graph data. In this paper, we propose a .nowledge g
42#
發(fā)表于 2025-3-28 21:15:59 | 只看該作者
HIT: Learning a?Hierarchical Tree-Based Model with?Variable-Length Layers for?Recommendation Systemsng structure is a practical solution to retrieve and recommend the most relevant items within a limited response time. The existing approaches that adopted embedding or tree-based index structures cannot handle the long-tail phenomenon. To address this issue, we propose a .erarchical .ree-based mode
43#
發(fā)表于 2025-3-29 00:13:21 | 只看該作者
44#
發(fā)表于 2025-3-29 04:07:47 | 只看該作者
Thompson Sampling with?Time-Varying Reward for?Contextual Banditsorithms utilize a fixed reward mechanism, which makes it difficult to accurately capture the preference changes of users in non-stationary environments, thus affecting recommendation performance. In this paper, we formalize the online recommendation task as a contextual bandit problem and propose a
45#
發(fā)表于 2025-3-29 07:16:05 | 只看該作者
46#
發(fā)表于 2025-3-29 11:35:44 | 只看該作者
Query2Trip: Dual-Debiased Learning for?Neural Trip Recommendation-specific query. Recent neural TripRec methods with sequence-to-sequence models have achieved remarkable performance. However, alongside the exposure bias in general recommender systems, the selection bias caused by the lack of explicit feedback (e.g., ratings) from the trip data exacerbates the ten
47#
發(fā)表于 2025-3-29 18:00:53 | 只看該作者
A New Reconstruction Attack: User Latent Vector Leakage in?Federated Recommendationre kept on its local device and thus are private to others. However, keeping the training data locally can not ensure the user’s privacy is compromised. In this paper, we show that the existing FR is vulnerable to a new reconstruction attack in which the attacker leverages the semi-trusted FR server
48#
發(fā)表于 2025-3-29 20:27:38 | 只看該作者
Dual-View Self-supervised Co-training for?Knowledge Graph Recommendationly improve model performance, has attracted considerable interest. Currently, KGR community has focused on designing Graph Neural Networks (GNNs)-based end-to-end KGR models. Unfortunately, existing GNNs-based KGR models are focused on extracting high-order attributes (knowledge) but suffer from res
49#
發(fā)表于 2025-3-30 01:20:44 | 只看該作者
50#
發(fā)表于 2025-3-30 04:24:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江安县| 疏附县| 濉溪县| 营口市| 会泽县| 婺源县| 阿荣旗| 金平| 微山县| 慈利县| 江源县| 比如县| 杭锦后旗| 新营市| 鄢陵县| 太仆寺旗| 岗巴县| 阜宁县| 柯坪县| 衢州市| 罗江县| 中超| 阿拉善盟| 宜宾市| 镶黄旗| 庆云县| 玉溪市| 凯里市| 平乡县| 桦川县| 林州市| 重庆市| 永康市| 定陶县| 孝昌县| 郁南县| 拉萨市| 汝城县| 翁源县| 什邡市| 萨嘎县|