找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[復(fù)制鏈接]
樓主: 日月等
51#
發(fā)表于 2025-3-30 10:06:29 | 只看該作者
Time-Based Trajectory Data Partitioning for Efficient Range Querysed hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.
52#
發(fā)表于 2025-3-30 15:21:10 | 只看該作者
53#
發(fā)表于 2025-3-30 18:05:39 | 只看該作者
Secure Computation of Pearson Correlation Coefficients for High-Quality Data Analyticsnts. For the secure Pearson correlation computation, we first propose an advanced solution by exploiting the secure scalar product. We then present an approximate solution by adopting the lower-dimensional transformation. We finally empirically show that the proposed solutions are practical methods in terms of execution time and data quality.
54#
發(fā)表于 2025-3-30 23:51:31 | 只看該作者
55#
發(fā)表于 2025-3-31 01:25:49 | 只看該作者
Extracting Schemas from Large Graphs with Utility Function and Parallelizationation cost. In this paper, we propose a schema extraction algorithm based on (a) a novel utility function called local utility function and (b) parallelization. Experimental results show that our algorithm can extract schemas from graphs more efficiently without losing quality of schemas.
56#
發(fā)表于 2025-3-31 07:41:27 | 只看該作者
57#
發(fā)表于 2025-3-31 12:53:45 | 只看該作者
Convolutional Neural Networks for Text Classification with Multi-size Convolution and Multi-type Pootakes too much time and energy to extract features of data, but only obtains poor performance. Recently, deep learning methods are widely used in text classification and result in good performance. In this paper, we propose a Convolutional Neural Network (CNN) with multi-size convolution and multi-t
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 22:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆明市| 江川县| 岳西县| 固镇县| 西华县| 宁河县| 高安市| 增城市| 垫江县| 昆明市| 泾川县| 延长县| 阳朔县| 阿克陶县| 竹北市| 马公市| 金溪县| 汤阴县| 静乐县| 进贤县| 酉阳| 长宁县| 吴忠市| 大名县| 旬邑县| 万年县| 龙南县| 丹阳市| 九龙县| 子洲县| 望城县| 灵武市| 香港| 德钦县| 黔江区| 西畴县| 鹤山市| 汝阳县| 泾川县| 连江县| 新乡市|