找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-intensive Systems; Principles and Funda Tomasz Wiktorski Book 2019 The Author(s), under exclusive license to Springer Nature Switzerla

[復制鏈接]
樓主: 毛發(fā)
11#
發(fā)表于 2025-3-23 11:31:36 | 只看該作者
https://doi.org/10.1007/978-1-349-07069-5rimarily focus on the two main components: Hadoop Distributed File System (HDFS) and MapReduce (MR). These two components provide the basic Hadoop functionality that most other elements rely on. I will also shortly cover other components, mostly to provide you with a basis for further independent exploration.
12#
發(fā)表于 2025-3-23 14:13:43 | 只看該作者
Social and Environmental FactorsData-intensive systems are a technological building block supporting Big Data and Data Science applications. Rapid emergence of these systems is driving the development of new books and courses to provide education in the techniques and technologies needed to extract knowledge from large datasets.
13#
發(fā)表于 2025-3-23 20:28:42 | 只看該作者
14#
發(fā)表于 2025-3-23 22:33:58 | 只看該作者
15#
發(fā)表于 2025-3-24 05:01:46 | 只看該作者
Preface,Data-intensive systems are a technological building block supporting Big Data and Data Science applications. Rapid emergence of these systems is driving the development of new books and courses to provide education in the techniques and technologies needed to extract knowledge from large datasets.
16#
發(fā)表于 2025-3-24 09:03:43 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:14 | 只看該作者
MapReduce Algorithms and Patterns,In this chapter, I will show you a few examples of the most common types of MapReduce patterns and algorithms. They will guide your thinking on how to encode typical operations in a MapReduce way. This should guide you in a way you think about your own coding challenges.
18#
發(fā)表于 2025-3-24 17:27:38 | 只看該作者
Introduction,and grow very fast. I also explain hardware trends that drive a need for new paradigms for data processing, which lead to new data processing systems—Data-Intensive Systems. These systems are an essential building block in Data Science application.
19#
發(fā)表于 2025-3-24 19:25:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扬中市| 弥勒县| 繁昌县| 太仆寺旗| 南城县| 西昌市| 高青县| 潮州市| 建湖县| 太康县| 扶绥县| 武陟县| 大洼县| 得荣县| 静安区| 昔阳县| 饶平县| 阿图什市| 翁源县| 大田县| 临安市| 安化县| 正镶白旗| 安远县| 顺义区| 广元市| 怀远县| 祥云县| 峨眉山市| 侯马市| 克什克腾旗| 侯马市| 汝南县| 湖口县| 湛江市| 隆子县| 和平区| 长治市| 台州市| 昆山市| 伊川县|