找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Fault Detection for Industrial Processes; Canonical Correlatio Zhiwen Chen Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 Mu

[復(fù)制鏈接]
查看: 26266|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:20:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data-Driven Fault Detection for Industrial Processes
副標(biāo)題Canonical Correlatio
編輯Zhiwen Chen
視頻videohttp://file.papertrans.cn/264/263295/263295.mp4
概述Publication in the field of technical sciences
圖書封面Titlebook: Data-Driven Fault Detection for Industrial Processes; Canonical Correlatio Zhiwen Chen Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 Mu
描述.Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed..
出版日期Book 2017
關(guān)鍵詞Multivariate statistical process monitoring; Performance evaluation; Data-Driven method; Subspace metho
版次1
doihttps://doi.org/10.1007/978-3-658-16756-1
isbn_softcover978-3-658-16755-4
isbn_ebook978-3-658-16756-1
copyrightSpringer Fachmedien Wiesbaden GmbH 2017
The information of publication is updating

書目名稱Data-Driven Fault Detection for Industrial Processes影響因子(影響力)




書目名稱Data-Driven Fault Detection for Industrial Processes影響因子(影響力)學(xué)科排名




書目名稱Data-Driven Fault Detection for Industrial Processes網(wǎng)絡(luò)公開(kāi)度




書目名稱Data-Driven Fault Detection for Industrial Processes網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Data-Driven Fault Detection for Industrial Processes被引頻次




書目名稱Data-Driven Fault Detection for Industrial Processes被引頻次學(xué)科排名




書目名稱Data-Driven Fault Detection for Industrial Processes年度引用




書目名稱Data-Driven Fault Detection for Industrial Processes年度引用學(xué)科排名




書目名稱Data-Driven Fault Detection for Industrial Processes讀者反饋




書目名稱Data-Driven Fault Detection for Industrial Processes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:47 | 只看該作者
https://doi.org/10.1007/978-3-031-49193-1ul implementations have been reported [40, 89, 125], the existing data-driven FD methods pay often less attention to deterministic disturbances. Recently, Luo . [75] proposed a data-driven FD approach for static processes with deterministic disturbances.
板凳
發(fā)表于 2025-3-22 01:21:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:00:56 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:51 | 只看該作者
New Results for Network Pollution GamesAdditive faults normally represent changes such as an abrupt increase in feed or a biased sensor, while multiplicative faults usually refer to changes, like variation in system parameters and variance of measurement noise [10, 16, 25, 90].
6#
發(fā)表于 2025-3-22 13:12:57 | 只看該作者
7#
發(fā)表于 2025-3-22 20:03:28 | 只看該作者
Occluded Face Recognition with Deep LearningIn this dissertation, the evaluation and comparison of two basic detection statistics for data-driven FD methods have been carried out, and advanced data-driven FD methods have been developed for complex industrial processes.
8#
發(fā)表于 2025-3-22 22:34:00 | 只看該作者
Improved CCA-based Fault Detection Methods,Additive faults normally represent changes such as an abrupt increase in feed or a biased sensor, while multiplicative faults usually refer to changes, like variation in system parameters and variance of measurement noise [10, 16, 25, 90].
9#
發(fā)表于 2025-3-23 03:41:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:00:51 | 只看該作者
Conclusions and Future Work,In this dissertation, the evaluation and comparison of two basic detection statistics for data-driven FD methods have been carried out, and advanced data-driven FD methods have been developed for complex industrial processes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖边县| 晋城| 阿瓦提县| 镇巴县| 恩施市| 蛟河市| 东乌| 昌都县| 比如县| 康平县| 丰都县| 平顺县| 理塘县| 诸暨市| 临城县| 礼泉县| 阳谷县| 嘉荫县| 芜湖县| 上犹县| 潼关县| 南和县| 神木县| 肃南| 隆林| 大宁县| 固镇县| 贵南县| 富川| 吉首市| 邻水| 天门市| 盘锦市| 江油市| 洛扎县| 广东省| 普格县| 亳州市| 同仁县| 吉木乃县| 永寿县|