找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Evolutionary Optimization; Integrating Evolutio Yaochu Jin,Handing Wang,Chaoli Sun Book 2021 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 31062|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:15:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data-Driven Evolutionary Optimization
副標(biāo)題Integrating Evolutio
編輯Yaochu Jin,Handing Wang,Chaoli Sun
視頻videohttp://file.papertrans.cn/264/263293/263293.mp4
概述Includes a brief introduction to mathematical programming, metaheuristic algorithms, and machine learning techniques.Presents a systematic description of most recent research advances in data-driven e
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Data-Driven Evolutionary Optimization; Integrating Evolutio Yaochu Jin,Handing Wang,Chaoli Sun Book 2021 The Editor(s) (if applicable) and
描述.Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques.? New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. ..This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included..
出版日期Book 2021
關(guān)鍵詞Data-Driven Evolutionary Optimization; Evolutionary Optimization; Computational Intelligence; Metaheuri
版次1
doihttps://doi.org/10.1007/978-3-030-74640-7
isbn_softcover978-3-030-74642-1
isbn_ebook978-3-030-74640-7Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Data-Driven Evolutionary Optimization影響因子(影響力)




書目名稱Data-Driven Evolutionary Optimization影響因子(影響力)學(xué)科排名




書目名稱Data-Driven Evolutionary Optimization網(wǎng)絡(luò)公開度




書目名稱Data-Driven Evolutionary Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data-Driven Evolutionary Optimization被引頻次




書目名稱Data-Driven Evolutionary Optimization被引頻次學(xué)科排名




書目名稱Data-Driven Evolutionary Optimization年度引用




書目名稱Data-Driven Evolutionary Optimization年度引用學(xué)科排名




書目名稱Data-Driven Evolutionary Optimization讀者反饋




書目名稱Data-Driven Evolutionary Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:57:52 | 只看該作者
1860-949X Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included..978-3-030-74642-1978-3-030-74640-7Series ISSN 1860-949X Series E-ISSN 1860-9503
地板
發(fā)表于 2025-3-22 07:49:28 | 只看該作者
Book 2021s deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included..
5#
發(fā)表于 2025-3-22 10:01:38 | 只看該作者
Segmental Duration and Speech Timinge fitness predictions. Compared to the Gaussian process, dropout neural networks are scalable to the increase in the number of decision variables and the number of objectives, and are more suited to incremental learning, making it particularly attractive for solving high-dimensional many-objective e
6#
發(fā)表于 2025-3-22 16:15:32 | 只看該作者
B. Geluvaraj,Meenatchi Sundaram strategy adopts a selective ensemble consisting of a subset of base learners chosen according to the search process. The third strategy builds a randomly sampled subsystem of the original system as the global model, and transfers its knowledge to a local surrogate. In addition, a method for selecti
7#
發(fā)表于 2025-3-22 20:57:18 | 只看該作者
Evolutionary and Swarm Optimization,s that combine evolutionary search with local search, and estimation of distribution algorithms that use a probabilistic model to generate offspring solutions will also be described. Finally, basic methodologies for solving multi- and many-objective optimization problems are introduced.
8#
發(fā)表于 2025-3-23 00:24:51 | 只看該作者
Multi-surrogate-Assisted Single-objective Optimization,f the fitness landscape. The multiple surrogates can be used as an ensemble, in parallel, hierarchically, or in an interleaving way. Finally, we describe a method for adaptively selecting one surrogate at a particular search stage from a pool of surrogates according to their performance in the history.
9#
發(fā)表于 2025-3-23 03:32:53 | 只看該作者
10#
發(fā)表于 2025-3-23 09:04:20 | 只看該作者
G. I. Marchouk,V. V. Shaydourovevaluating the quality of solutions and performance of optimization algorithms are described. A number of illustrative and real-world optimization problems are provided as examples in explaining the concepts and definitions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰宁| 磐安县| 招远市| 巴马| 康马县| 高唐县| 大名县| 克东县| 宜川县| 原平市| 炎陵县| 普兰店市| 拉萨市| 西藏| 平塘县| 瓦房店市| 松原市| 两当县| 泰和县| 上高县| 天全县| 马边| 翼城县| 乾安县| 兖州市| 阿城市| 宁陕县| 岐山县| 仁寿县| 静乐县| 鸡东县| 武邑县| 固安县| 息烽县| 尖扎县| 宁南县| 青龙| 武冈市| 楚雄市| 唐海县| 行唐县|