找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Streams; Models and Algorithm Charu C. Aggarwal Book 2007 Springer-Verlag US 2007 algorithm.algorithms.data.data streams.database.freq

[復制鏈接]
樓主: ETHOS
51#
發(fā)表于 2025-3-30 11:30:29 | 只看該作者
52#
發(fā)表于 2025-3-30 15:25:11 | 只看該作者
The Sliding-Window Computation Model and Results,l and pertinent than older data. In such cases, we would like to answer questions about the data only over the last . most recent data elements (. is a parameter). We formalize this model of computation and answer questions about how much space and computation time is required to solve certain problems under the sliding-window model.
53#
發(fā)表于 2025-3-30 19:31:38 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:25 | 只看該作者
https://doi.org/10.1007/978-1-0716-3230-7ay. Many existing data mining methods cannot be applied directly on data streams because of the fact that the data needs to be mined in one pass. Furthermore, data streams show a considerable amount of temporal locality because of which a direct application of the existing methods may lead to mislea
55#
發(fā)表于 2025-3-31 02:07:47 | 只看該作者
Sevdalina Kandilarova,Igor Rie?anskyto as data streams. Streaming data is ubiquitous today and it is often a challenging task to store, analyze and visualize such rapid large volumes of data. Most conventional data mining techniques have to be adapted to run in a streaming environment, because of the underlying resource constraints in
56#
發(fā)表于 2025-3-31 06:14:18 | 只看該作者
57#
發(fā)表于 2025-3-31 09:46:23 | 只看該作者
58#
發(fā)表于 2025-3-31 15:44:24 | 只看該作者
António R.C. Paiva,Il Park,José C. Príncipeant characteristic: .. To discover high-level dynamic and evolving characteristics, one may need to perform multi-level, multi-dimensional on-line analytical processing (OLAP) of stream data. Such necessity calls for the investigation of new architectures that may facilitate on-line analytical proce
59#
發(fā)表于 2025-3-31 17:37:02 | 只看該作者
Dylan A. Simon,Nathaniel D. Daw may vary over time. In this chapter, we focus on one particular type of adaptivity: the ability to gracefully degrade performance via “l(fā)oad shedding” (dropping unprocessed tuples to reduce system load) when the demands placed on the system cannot be met in full given available resources. Focusing o
60#
發(fā)表于 2025-4-1 00:47:42 | 只看該作者
Zeb Kurth-Nelson,A. David Redishl and pertinent than older data. In such cases, we would like to answer questions about the data only over the last . most recent data elements (. is a parameter). We formalize this model of computation and answer questions about how much space and computation time is required to solve certain probl
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-5 23:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清原| 沾化县| 闽侯县| 宣恩县| 宁津县| 塔河县| 灵石县| 江达县| 定西市| 遵义县| 江山市| 澜沧| 延安市| 雷山县| 揭西县| 永年县| 灵川县| 定结县| 鲁甸县| 北辰区| 苍山县| 毕节市| 资溪县| 无棣县| 广安市| 鄂托克前旗| 资兴市| 故城县| 临沂市| 珠海市| 洛浦县| 台安县| 清涧县| 资阳市| 桃园县| 武平县| 宣恩县| 怀化市| 临湘市| 宁远县| 肥西县|