找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Streams; Models and Algorithm Charu C. Aggarwal Book 2007 Springer-Verlag US 2007 algorithm.algorithms.data.data streams.database.freq

[復(fù)制鏈接]
樓主: ETHOS
31#
發(fā)表于 2025-3-26 23:40:13 | 只看該作者
A Survey of Synopsis Construction in Data Streams,ill provide a survey of the key synopsis techniques, and the mining techniques supported by such methods. We will discuss the challenges and tradeoffs associated with using different kinds of techniques, and the important research directions for synopsis construction.
32#
發(fā)表于 2025-3-27 02:17:51 | 只看該作者
Algorithms for Distributed Data Stream Mining,sure to the literature and illustrates the behavior of this class of algorithms by exploring two very different types of techniques—one for the peer-to-peer and another for the hierarchical distributed environment. The chapter also briefly discusses several different applications of these algorithms.
33#
發(fā)表于 2025-3-27 05:45:41 | 只看該作者
Dimensionality Reduction and Forecasting on Streams,do this quickly, with no buffering of stream values and without comparing pairs of streams. Moreover, it is any-time, single pass, and it dynamically detects changes. The discovered trends can also be used to immediately spot potential anomalies, to do efficient forecasting and, more generally, to dramatically simplify further data processing.
34#
發(fā)表于 2025-3-27 11:38:08 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:32 | 只看該作者
R. Gabasov,N. V. Balashevich,F. M. Kirillova terms):At any time ., the set of output tuples generated thus far by the join betweentwo streams .. and .. should be the same as the result of the relational (non-streaming) join between the sets of input tuples that have arrived thus far in ..and ...
36#
發(fā)表于 2025-3-27 18:05:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:01:31 | 只看該作者
38#
發(fā)表于 2025-3-28 02:41:58 | 只看該作者
39#
發(fā)表于 2025-3-28 09:27:46 | 只看該作者
https://doi.org/10.1007/978-1-0716-3230-7ering as a general summarization technology to solve data mining problems on streams. Our discussion illustrates the importance of our approach for a variety of mining problems in the data stream domain.
40#
發(fā)表于 2025-3-28 11:41:21 | 只看該作者
Sevdalina Kandilarova,Igor Rie?anskypective, it is a much more challenging problem in the data stream domain. In this chapter, we will re-visit the problem of classification from the data stream perspective. The techniques for this problem need to be thoroughly re-designed to address the issue of resource constraints and concept drift
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 01:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连江县| 大方县| 韩城市| 昂仁县| 福海县| 黔西县| 老河口市| 龙胜| 台湾省| 攀枝花市| 石河子市| 武川县| 扎兰屯市| 城市| 蒙城县| 澜沧| 光山县| 闻喜县| 安仁县| 清徐县| 武鸣县| 土默特右旗| 台前县| 芜湖县| 南木林县| 邵东县| 盖州市| 邓州市| 宜兰市| 淮安市| 禄丰县| 依安县| 百色市| 阳东县| 潞城市| 延寿县| 汝城县| 吴川市| 环江| 平塘县| 苏尼特右旗|