找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science for Financial Econometrics; Nguyen Ngoc Thach,Vladik Kreinovich,Nguyen Duc Tru Book 2021 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 21883|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:47:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Data Science for Financial Econometrics
編輯Nguyen Ngoc Thach,Vladik Kreinovich,Nguyen Duc Tru
視頻videohttp://file.papertrans.cn/264/263118/263118.mp4
概述Presents recent findings and ideas on applying data science techniques to economic phenomena – and, in particular, financial phenomena.Inspires practitioners to learn how to apply various data science
叢書(shū)名稱(chēng)Studies in Computational Intelligence
圖書(shū)封面Titlebook: Data Science for Financial Econometrics;  Nguyen Ngoc Thach,Vladik Kreinovich,Nguyen Duc Tru Book 2021 The Editor(s) (if applicable) and Th
描述.This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.??.
出版日期Book 2021
關(guān)鍵詞Computational Intelligence; Intelligent Systems; Econometrics; Data Science; Probabilistic Methods; Econo
版次1
doihttps://doi.org/10.1007/978-3-030-48853-6
isbn_softcover978-3-030-48855-0
isbn_ebook978-3-030-48853-6Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Data Science for Financial Econometrics影響因子(影響力)




書(shū)目名稱(chēng)Data Science for Financial Econometrics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Data Science for Financial Econometrics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics被引頻次




書(shū)目名稱(chēng)Data Science for Financial Econometrics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics年度引用




書(shū)目名稱(chēng)Data Science for Financial Econometrics年度引用學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics讀者反饋




書(shū)目名稱(chēng)Data Science for Financial Econometrics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:36 | 只看該作者
A QP Framework: A Contextual Representation of Agents’ Preferences in Investment Choicedescription of their vacillating ambiguity perception characterized by non-additive beliefs of agents. Some of the implications of non-classicality in beliefs for the composite market outcomes can also be modelled with the aid of QP. As a final step we also discuss the contributions of the growing b
板凳
發(fā)表于 2025-3-22 04:27:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:42 | 只看該作者
5#
發(fā)表于 2025-3-22 08:49:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:51:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:09:03 | 只看該作者
Impacts of Internal and External Macroeconomic Factors on Firm Stock Price in an Expansion Econometr
8#
發(fā)表于 2025-3-23 00:23:39 | 只看該作者
Andreas Richter,J?rg Stiller,Roger Grundmannwe explain the empirical success of these methods by showing that they are the only ones which are invariant with respect to natural transformations—like scaling which corresponds to selecting a different measuring?unit.
9#
發(fā)表于 2025-3-23 04:16:59 | 只看該作者
Alexey N. Volkov,Gerard M. O’Connorce in support of the selected model: weak, strong, very strong, or decisive. The corresponding strength levels are based on a heuristic scale proposed by Harold Jeffreys, one of the pioneers of the Bayes approach to statistics. In this paper, we propose a justification for this scale.
10#
發(fā)表于 2025-3-23 08:18:47 | 只看該作者
M. Hafez,K. Morinishi,J. Periauxs were not operating at an optimal scale or even close to optimal scale. The results also indicated that the number of employees input was used excessively in the sample MFIs. The findings of the present study would be useful for policymakers in improving the current levels of technical and scale efficiencies of MFIs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉田县| 沿河| 沛县| 余姚市| 马边| 普安县| 宁蒗| 农安县| 沙湾县| 兴业县| 水富县| 南江县| 南投市| 镇坪县| 龙胜| 临邑县| 永昌县| 黄浦区| 永登县| 双江| 扶沟县| 咸宁市| 西充县| 灵武市| 淮北市| 剑河县| 姚安县| 精河县| 兰考县| 东明县| 曲阜市| 台南市| 肥东县| 开封县| 东阿县| 晋城| 高青县| 东明县| 本溪市| 嘉善县| 陆丰市|