找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science for Economics and Finance; Methodologies and Ap Sergio Consoli,Diego Reforgiato Recupero,Michaela Book‘‘‘‘‘‘‘‘ 2021 The Edito

[復(fù)制鏈接]
查看: 43447|回復(fù): 59
樓主
發(fā)表于 2025-3-21 20:07:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science for Economics and Finance
副標(biāo)題Methodologies and Ap
編輯Sergio Consoli,Diego Reforgiato Recupero,Michaela
視頻videohttp://file.papertrans.cn/264/263115/263115.mp4
概述Covers the use of data science technologies, including advanced machine learning, Semantic Web technologies, social media analysis, and time series forecasting for applications in economics and financ
圖書封面Titlebook: Data Science for Economics and Finance; Methodologies and Ap Sergio Consoli,Diego Reforgiato Recupero,Michaela  Book‘‘‘‘‘‘‘‘ 2021 The Edito
描述.This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models...The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis.??..This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunit
出版日期Book‘‘‘‘‘‘‘‘ 2021
關(guān)鍵詞Open Access; Data Mining; Big Data; Data Analytics; Decision Support Systems; Machine Learning; Semantics
版次1
doihttps://doi.org/10.1007/978-3-030-66891-4
isbn_softcover978-3-030-66893-8
isbn_ebook978-3-030-66891-4
copyrightThe Editor(s) (if applicable) and The Author(s) 2021
The information of publication is updating

書目名稱Data Science for Economics and Finance影響因子(影響力)




書目名稱Data Science for Economics and Finance影響因子(影響力)學(xué)科排名




書目名稱Data Science for Economics and Finance網(wǎng)絡(luò)公開度




書目名稱Data Science for Economics and Finance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science for Economics and Finance被引頻次




書目名稱Data Science for Economics and Finance被引頻次學(xué)科排名




書目名稱Data Science for Economics and Finance年度引用




書目名稱Data Science for Economics and Finance年度引用學(xué)科排名




書目名稱Data Science for Economics and Finance讀者反饋




書目名稱Data Science for Economics and Finance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:19 | 只看該作者
Data Science Technologies in Economics and Finance: A Gentle Walk-In,e of the common issues in economic modeling with data science technologies and surveys the relevant big data management and analytics solutions, motivating the use of data science methods in economics and finance.
板凳
發(fā)表于 2025-3-22 01:56:25 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:45 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:09 | 只看該作者
6#
發(fā)表于 2025-3-22 16:13:02 | 只看該作者
7#
發(fā)表于 2025-3-22 17:14:59 | 只看該作者
https://doi.org/10.1007/978-1-61779-465-0e of the common issues in economic modeling with data science technologies and surveys the relevant big data management and analytics solutions, motivating the use of data science methods in economics and finance.
8#
發(fā)表于 2025-3-22 22:44:54 | 只看該作者
Methods for Functional Connectivity Analysissemble method cannot be easily identified in the empirical literature. Third, despite the possibility that machine learning techniques could fail to outperform linear classification methods when standard accuracy measures are considered, in the end they lead to significant cost savings compared to t
9#
發(fā)表于 2025-3-23 01:30:52 | 只看該作者
E. Pasternak,H. B. Mühlhaus,A. V. Dyskinter knowledge graphs. This information can augment source documents and guide exploration processes. Systems for document exploration are tailored to specific tasks, such as investigative work in audits or legal discovery, monitoring compliance, or providing information in a retrieval system to supp
10#
發(fā)表于 2025-3-23 09:26:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青龙| 南昌县| 谢通门县| 东莞市| 安仁县| 平顶山市| 南昌县| 昌都县| 呈贡县| 临城县| 兴国县| 西丰县| 金平| 日土县| 鹤山市| 清丰县| 桦南县| 扬中市| 临清市| 桐庐县| 绥滨县| 茶陵县| 闽侯县| 吴忠市| 内乡县| 尉犁县| 兴业县| 高要市| 太仆寺旗| 和田市| 北流市| 土默特右旗| 林州市| 临邑县| 安远县| 大田县| 邳州市| 井研县| 舟曲县| 宁都县| 卢湾区|