找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Security; Proceedings of IDSCS Samiksha Shukla,Aynur Unal,Dong Seog Han Conference proceedings 2021 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: HABIT
31#
發(fā)表于 2025-3-26 22:55:58 | 只看該作者
Computational Collective Intelligence for security and privacy concerns and a new taxonomy proposed that could accommodate all potential threats. A detailed review of available security and privacy audit tools has also been done for common smart contract platforms. At last, identified the challenges required to be addressed to make the smart contract more efficient.
32#
發(fā)表于 2025-3-27 03:06:00 | 只看該作者
33#
發(fā)表于 2025-3-27 07:50:33 | 只看該作者
A Systematic Review of Challenges and Techniques of Privacy-Preserving Machine Learning,f privacy in ML, classifies current privacy threats, and describes state-of-the-art mitigation techniques named Privacy-Preserving Machine Learning (PPML) techniques. The paper compares existing PPML techniques based on relevant parameters, thereby presenting gaps in the existing literature and proposing probable future research drifts.
34#
發(fā)表于 2025-3-27 11:35:33 | 只看該作者
35#
發(fā)表于 2025-3-27 16:54:11 | 只看該作者
36#
發(fā)表于 2025-3-27 20:21:34 | 只看該作者
37#
發(fā)表于 2025-3-28 01:33:40 | 只看該作者
Smart Contract Security and Privacy Taxonomy, Tools, and Challenges, for security and privacy concerns and a new taxonomy proposed that could accommodate all potential threats. A detailed review of available security and privacy audit tools has also been done for common smart contract platforms. At last, identified the challenges required to be addressed to make the smart contract more efficient.
38#
發(fā)表于 2025-3-28 05:48:17 | 只看該作者
39#
發(fā)表于 2025-3-28 08:51:12 | 只看該作者
40#
發(fā)表于 2025-3-28 12:13:37 | 只看該作者
Deep Learning Methods for Intrusion Detection System,his paper, an intrusion detection system is built using Deep Learning approaches Deep neural network and Convolutional Neural Network to detect DoS attacks. CICIDS2017 dataset is used to train the model and test the performance of the model. The experimental trials show that the proposed model outperforms all the previously implemented models.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
筠连县| 都江堰市| 许昌市| 拜泉县| 东源县| 措美县| 永仁县| 博白县| 长宁区| 利津县| 商都县| 襄汾县| 永胜县| 星子县| 哈密市| 泌阳县| 文安县| 新丰县| 神池县| 新田县| 方山县| 彭泽县| 云龙县| 津南区| 平邑县| 永福县| 浪卡子县| 保康县| 乐昌市| 宁明县| 萨迦县| 和田县| 宣武区| 永嘉县| 东平县| 钟祥市| 连江县| 永春县| 龙泉市| 大田县| 桦川县|