找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Predictive Analytics; Biomedical and Healt Ivo D. Dinov Textbook 20181st edition Ivo D. Dinov 2018 big data.R.statistical

[復(fù)制鏈接]
查看: 47577|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:26:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Science and Predictive Analytics
副標(biāo)題Biomedical and Healt
編輯Ivo D. Dinov
視頻videohttp://file.papertrans.cn/264/263104/263104.mp4
概述A novel transdisciplinary treatise of predictive health analytics.Complete and self-contained treatment of the theory, experimental modeling, system development, and validation of predictive health an
圖書封面Titlebook: Data Science and Predictive Analytics; Biomedical and Healt Ivo D. Dinov Textbook 20181st edition Ivo D. Dinov 2018 big data.R.statistical
描述Over the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryder’s law > Moore’s law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic trainingenvironments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pi
出版日期Textbook 20181st edition
關(guān)鍵詞big data; R; statistical computing; predictive analytics; data science; health analytics; machine learning
版次1
doihttps://doi.org/10.1007/978-3-319-72347-1
isbn_softcover978-3-030-10187-9
isbn_ebook978-3-319-72347-1
copyrightIvo D. Dinov 2018
The information of publication is updating

書目名稱Data Science and Predictive Analytics影響因子(影響力)




書目名稱Data Science and Predictive Analytics影響因子(影響力)學(xué)科排名




書目名稱Data Science and Predictive Analytics網(wǎng)絡(luò)公開度




書目名稱Data Science and Predictive Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science and Predictive Analytics被引頻次




書目名稱Data Science and Predictive Analytics被引頻次學(xué)科排名




書目名稱Data Science and Predictive Analytics年度引用




書目名稱Data Science and Predictive Analytics年度引用學(xué)科排名




書目名稱Data Science and Predictive Analytics讀者反饋




書目名稱Data Science and Predictive Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:37:39 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:25 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:14 | 只看該作者
Linear Algebra & Matrix Computing,is generally challenging to visualize complex data, e.g., large vectors, tensors, and tables in n-dimensional Euclidian spaces (.?≥?3). Linear algebra allows us to mathematically represent, computationally model, statistically analyze, synthetically simulate, and visually summarize such complex data
6#
發(fā)表于 2025-3-22 13:11:01 | 只看該作者
Dimensionality Reduction,ber of features when modeling a very large number of variables. Dimension reduction can help us extract a set of “uncorrelated” principal variables and reduce the complexity of the data. We are not simply picking some of the original variables. Rather, we are constructing new “uncorrelated” variable
7#
發(fā)表于 2025-3-22 17:55:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:39:17 | 只看該作者
9#
發(fā)表于 2025-3-23 04:40:02 | 只看該作者
Decision Tree Divide and Conquer Classification,les. In some cases, we need to specify well stated rules for our decisions, just like a scoring criterion for driving ability or credit scoring for loan underwriting. The decisions in many situations actually require having a clear and easily understandable decision tree to follow the classification
10#
發(fā)表于 2025-3-23 08:58:00 | 只看該作者
Forecasting Numeric Data Using Regression Models, this Chapter, we will focus on specific model-based statistical methods providing forecasting and classification functionality. Specifically, we will (1) demonstrate the predictive power of multiple linear regression; (2) show the foundation of regression trees and model trees; and (3) examine two
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂拉木县| 宁晋县| 星子县| 正安县| 友谊县| 江都市| 紫云| 民乐县| 玉田县| 九寨沟县| 珠海市| 曲松县| 钟祥市| 朝阳县| 安宁市| 上虞市| 蓝山县| 酉阳| 修武县| 邯郸市| 南和县| 苍南县| 红河县| 固镇县| 杭锦旗| 云霄县| 赣州市| 嘉祥县| 轮台县| 玉山县| 萨迦县| 隆子县| 营山县| 奎屯市| 石河子市| 台湾省| 汉沽区| 高邑县| 疏勒县| 三原县| 五家渠市|