找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science and Network Engineering; Proceedings of ICDSN Suyel Namasudra,Munesh Chandra Trivedi,Pascal Lore Conference proceedings 2024 T

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:27:47 | 只看該作者
Computational Analysis and Methodology,per tested several machine learning methods using supervised classification techniques and got the highest accuracy among other low-resource languages in most of the models tested and among which Multinomial Naive Bayes classification gives an accuracy of 96% and is the highest when compared to the other models.
42#
發(fā)表于 2025-3-28 21:56:38 | 只看該作者
43#
發(fā)表于 2025-3-29 00:02:51 | 只看該作者
Teenager Friendly News Classification Using Machine Learning Modelwell-known statistical measures and machine learning (ML) models. In this proposed system, we compare Linear Support Vector Classifier (LSVC), Logistic Regression (LR), Multinomial Na?ve Bayes (MNB), Random Forest Classifier (RFC), and Decision Tree Classifier (DTC) algorithms in which LR outperforms the other algorithms.
44#
發(fā)表于 2025-3-29 06:49:47 | 只看該作者
45#
發(fā)表于 2025-3-29 10:59:29 | 只看該作者
46#
發(fā)表于 2025-3-29 11:41:24 | 只看該作者
A Framework for Extractive Text Summarization of Single Text Document in Tamil Language Using Frequearity and so on. In this paper, a framework for extractive text summarization using features extracted from a Tamil document has been proposed. The summarizer is based on Fuzzy logic inference engine. The framework describes the modules involved in the generation of Extractive Text Summary for a single document.
47#
發(fā)表于 2025-3-29 15:39:26 | 只看該作者
An Approach to Mizo Language News Classification Using Machine Learningper tested several machine learning methods using supervised classification techniques and got the highest accuracy among other low-resource languages in most of the models tested and among which Multinomial Naive Bayes classification gives an accuracy of 96% and is the highest when compared to the other models.
48#
發(fā)表于 2025-3-29 20:03:09 | 只看該作者
49#
發(fā)表于 2025-3-30 03:32:28 | 只看該作者
Evaluation of Hand-Crafted Features for the Classification of Spam SMS in Dravidian Languagesrauds share. This immediate reaction to the fraud messages makes people lose their balance in bank accounts or fall into some other horrible events. These types of fake or spam messages have to be identified earlier before they come to users’ Inbox. This paper proposes a Spam message filtering model
50#
發(fā)表于 2025-3-30 06:28:45 | 只看該作者
Training Algorithms for Mixtures of Normalizing Flowst do not necessarily provide an actual implementation of the method. These four algorithms are gradient ascent maximizing the log-likelihood of the data, (soft) expectation–maximization, hard expectation–maximization, and gradient ascent maximizing the evidence lower bound. Our contribution or the n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇西县| 阳山县| 耿马| 韩城市| 崇明县| 仪征市| 兴文县| 噶尔县| 沙湾县| 克东县| 延津县| 麻栗坡县| 兰州市| 三原县| 盐亭县| 丰城市| 夏津县| 三明市| 桃江县| 铜陵市| 沛县| 温州市| 义乌市| 武隆县| 昌江| 高邮市| 久治县| 耿马| 讷河市| 荣昌县| 中宁县| 黑水县| 西平县| 塔城市| 湛江市| 洛阳市| 宁蒗| 南城县| 安顺市| 普兰店市| 遂平县|