找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine

[復制鏈接]
樓主: 天真無邪
21#
發(fā)表于 2025-3-25 06:39:19 | 只看該作者
Nonlinear Modeling With Scikit-Learn, PySpark, and H2O,This chapter executes and appraises a nonlinear method for binary classification (called .) using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Spark MLlib, and H2O). To begin, it clarifies the underlying concept behind the sigmoid function.
22#
發(fā)表于 2025-3-25 10:27:41 | 只看該作者
23#
發(fā)表于 2025-3-25 15:30:43 | 只看該作者
Neural Networks with Scikit-Learn, Keras, and H2O,This chapter executes and assesses nonlinear neural networks to address binary classification using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Keras, and H2O).
24#
發(fā)表于 2025-3-25 17:15:58 | 只看該作者
Cluster Analysis with Scikit-Learn, PySpark, and H2O,This chapter explains the . cluster method by implementing a diverse set of Python frameworks (i.e., Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method apportions values to clusters.
25#
發(fā)表于 2025-3-25 21:14:17 | 只看該作者
Principal Component Analysis with Scikit-Learn, PySpark, and H2O,This chapter executes a simple dimension reducer (a principal component method) by implementing a diverse set of Python frameworks (Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method computes components.
26#
發(fā)表于 2025-3-26 01:44:15 | 只看該作者
27#
發(fā)表于 2025-3-26 04:44:45 | 只看該作者
Leszek J. Chmielewski,Arkadiusz Or?owski(ML) and deep learning (DL) frameworks useful for building scalable applications. After reading this chapter, you will understand how big data is collected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks.
28#
發(fā)表于 2025-3-26 10:33:11 | 只看該作者
29#
發(fā)表于 2025-3-26 13:49:28 | 只看該作者
978-1-4842-7761-4Tshepo Chris Nokeri 2022
30#
發(fā)表于 2025-3-26 17:43:51 | 只看該作者
Big Data, Machine Learning, and Deep Learning Frameworks,(ML) and deep learning (DL) frameworks useful for building scalable applications. After reading this chapter, you will understand how big data is collected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 01:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
秭归县| 滦平县| 房产| 高要市| 博兴县| 天峨县| 县级市| 汪清县| 临武县| 铁岭县| 泸州市| 新源县| 盘锦市| 全州县| 紫阳县| 丰县| 香港 | 兴业县| 房产| 呼和浩特市| 临猗县| 许昌市| 凭祥市| 长沙县| 青铜峡市| 社旗县| 甘孜县| 承德市| 额敏县| 奇台县| 宁城县| 磐安县| 黑龙江省| 繁峙县| 桃园县| 咸宁市| 茂名市| 潞西市| 渭南市| 当雄县| 晋宁县|