找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Solutions on Azure; Tools and Techniques Julian Soh,Priyanshi Singh Book 20201st edition Julian Soh and Priyanshi Singh 2020 A

[復(fù)制鏈接]
查看: 38921|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:54:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Science Solutions on Azure
副標(biāo)題Tools and Techniques
編輯Julian Soh,Priyanshi Singh
視頻videohttp://file.papertrans.cn/264/263068/263068.mp4
概述Holistic coverage of Azure data science capabilities.Covers Azure Cognitive Services API for AI developers.Consists of Case Studies for each operation discussed
圖書封面Titlebook: Data Science Solutions on Azure; Tools and Techniques Julian Soh,Priyanshi Singh Book 20201st edition Julian Soh and Priyanshi Singh 2020 A
描述Understand and learn?the skills needed to use modern tools in Microsoft Azure. This book discusses how to practically apply these tools in the industry, and help drive the transformation of organizations into a knowledge and data-driven entity.?It?provides an end-to-end understanding of data science life cycle and the techniques to efficiently productionize workloads.?.The book starts with an introduction to data science and discusses the statistical techniques data scientists should know. You‘ll then move on to machine learning in Azure where you will review the basics of data preparation and engineering, along with Azure ML service and automated machine learning. You‘ll also explore Azure Databricks and learn how to deploy, create and manage the same. In the final chapters you‘ll?go through machine learning operations in Azure followed by the practical implementation of artificial intelligence through machine learning.?.Data Science Solutions on Azure.?will reveal how the different Azure services work together using real life scenarios and how-to-build solutions in a single comprehensive cloud ecosystem.?.What You‘ll Learn.Understand big data analytics with Spark in Azure Databri
出版日期Book 20201st edition
關(guān)鍵詞Azure; Data Scientist; DevOps; Azure Databricks; data abstraction; Big data analytics
版次1
doihttps://doi.org/10.1007/978-1-4842-6405-8
isbn_softcover978-1-4842-6404-1
isbn_ebook978-1-4842-6405-8
copyrightJulian Soh and Priyanshi Singh 2020
The information of publication is updating

書目名稱Data Science Solutions on Azure影響因子(影響力)




書目名稱Data Science Solutions on Azure影響因子(影響力)學(xué)科排名




書目名稱Data Science Solutions on Azure網(wǎng)絡(luò)公開(kāi)度




書目名稱Data Science Solutions on Azure網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Data Science Solutions on Azure被引頻次




書目名稱Data Science Solutions on Azure被引頻次學(xué)科排名




書目名稱Data Science Solutions on Azure年度引用




書目名稱Data Science Solutions on Azure年度引用學(xué)科排名




書目名稱Data Science Solutions on Azure讀者反饋




書目名稱Data Science Solutions on Azure讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:13 | 只看該作者
Government Regulation of Transfer PricingThe exponential pace of innovation in artificial intelligence in recent years can be attributed to advancements in machine learning. In turn, the advancements in machine learning are based on two core developments?– availability of data and ubiquitous access to unparalleled compute capabilities.
板凳
發(fā)表于 2025-3-22 00:47:31 | 只看該作者
https://doi.org/10.1007/978-3-030-58823-6In Chapter ., we explored the concepts of Spark and Azure Databricks’ implementation of the platform. In this chapter, we will be doing a hands-on exploration of these concepts in Azure Databricks.
地板
發(fā)表于 2025-3-22 08:31:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:12:27 | 只看該作者
6#
發(fā)表于 2025-3-22 14:31:31 | 只看該作者
Hands-on with Azure Databricks,In Chapter ., we explored the concepts of Spark and Azure Databricks’ implementation of the platform. In this chapter, we will be doing a hands-on exploration of these concepts in Azure Databricks.
7#
發(fā)表于 2025-3-22 20:28:44 | 只看該作者
Data Science in the Modern Enterprise,t innovation, such as machine learning (ML), artificial intelligence (AI), and Internet of Things (IoT). This is not an inaccurate representation since data science is after all the foundation for ML, AI, and IoT.
8#
發(fā)表于 2025-3-23 00:30:50 | 只看該作者
Data Preparation and Data Engineering Basics,he process, which, if not done correctly, would yield inaccurate results and may lead to negative consequences. That is why so much time is being spent on data preparation. If we want to make the data science process more efficient, shaving off the amount of time spent on data preparation is one area for us to look at.
9#
發(fā)表于 2025-3-23 04:55:43 | 只看該作者
Clinical Diagnosis: “Simple” Patientst innovation, such as machine learning (ML), artificial intelligence (AI), and Internet of Things (IoT). This is not an inaccurate representation since data science is after all the foundation for ML, AI, and IoT.
10#
發(fā)表于 2025-3-23 08:14:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶阳县| 凤山市| 苗栗市| 剑川县| 儋州市| 馆陶县| 屏东市| 河津市| 玛纳斯县| 福贡县| 淮滨县| 沧州市| 乌拉特前旗| 马尔康县| 修武县| 柘城县| 资中县| 龙游县| 德令哈市| 进贤县| 井研县| 库车县| 兴宁市| 陵水| 广南县| 溧阳市| 炉霍县| 顺平县| 瑞昌市| 瑞丽市| 澎湖县| 晋城| 保康县| 平陆县| 慈溪市| 绍兴县| 新丰县| 图木舒克市| 布拖县| 信阳市| 三门峡市|