找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Quality and Trust in Big Data; 5th International Wo Hakim Hacid,Quan Z. Sheng,Rui Zhou Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
樓主: Retina
21#
發(fā)表于 2025-3-25 03:59:15 | 只看該作者
Leonardo Augusto de Andrade BarbosaT, we first propose some factors to capture the costs and benefits of a relationship. Then, based on these factors, we propose a trust metric called .; at that point, we propose a trust prediction method, based on Matrix Factorization and apply the context of trust in a mathematical model. Finally,
22#
發(fā)表于 2025-3-25 11:09:25 | 只看該作者
Studies in the History of Law and Justicee the recommendation quality. For instance, users who used to watch . movie, may be less likely to receive . movie, leading to redundant type of items and decreasing user’s satisfaction. In this paper, we aim to exploit user’s personality type and incorporate it as a primary and enduring domain-inde
23#
發(fā)表于 2025-3-25 15:26:21 | 只看該作者
A Novel Data Quality Metric for Minimality, others, the basis for artificial intelligence applications. While the majority of research into data quality refers to the data values of an information system, less research is concerned with schema quality. However, a poorly designed schema negatively impacts the quality of the data, for example,
24#
發(fā)表于 2025-3-25 19:46:24 | 只看該作者
Automated Schema Quality Measurement in Large-Scale Information Systems,f the stored data, e.g., it may lead to inconsistencies and anomalies at the data-level. Even if the initial schema had an ideal design, changes during the life cycle can negatively affect the schema quality and have to be tackled. Especially in Big Data environments there are two major challenges:
25#
發(fā)表于 2025-3-25 22:07:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:21:54 | 只看該作者
27#
發(fā)表于 2025-3-26 06:11:53 | 只看該作者
,CNR: Cross-network Recommendation Embedding User’s Personality, of the most challenging problems in these systems is the data sparsity problem, i.e., lack of sufficient amount of available users’ interactions data. Recently, cross-network recommender systems with the idea of integrating users’ activities from multiple domain were presented as a successful solut
28#
發(fā)表于 2025-3-26 09:22:50 | 只看該作者
29#
發(fā)表于 2025-3-26 13:28:12 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:30 | 只看該作者
Data-Intensive Computing Acceleration with Python in Xilinx FPGA, techniques, such as CNN/RNN, over massive chunks of data objects. These services require novel devices with configurable high throughput in I/O (i.e., data-based model training), and uniquely large computation capability (i.e., large number of convolutional operations). In this paper, we present ou
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铅山县| 湛江市| 湘潭市| 清河县| 张北县| 涞水县| 平乐县| 五原县| 南丰县| 拜城县| 宜阳县| 古交市| 京山县| 清苑县| 洮南市| 汾阳市| 麻江县| 武定县| 循化| 江陵县| 金华市| 沧州市| 苍溪县| 崇左市| 永年县| 吴江市| 班玛县| 大同县| 富裕县| 临高县| 娱乐| 辉县市| 延吉市| 公主岭市| 宁远县| 江门市| 财经| 丹凤县| 穆棱市| 石城县| 凤翔县|