找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Profiling; Ziawasch Abedjan,Lukasz Golab,Thorsten Papenbrock Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: FETID
11#
發(fā)表于 2025-3-23 11:08:18 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:12 | 只看該作者
Profiling Non-Relational Data,, semi-structured data such as XML and RDF and non-structured data such as text. In this chapter, we describe two types of solutions: those which apply traditional data profiling algorithms to new types of data and those which develop new approaches to profiling non-relational data.
13#
發(fā)表于 2025-3-23 21:31:21 | 只看該作者
14#
發(fā)表于 2025-3-24 01:01:21 | 只看該作者
Conclusions,s for discovering unique column combinations, functional dependencies among columns, and inclusion dependencies among tables. While the focus of this book is on exact profiling of relational data, we provided a brief discussion of approximate profiling using data sketches and profiling non-relational data, such as text and graphs.
15#
發(fā)表于 2025-3-24 05:23:45 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:59 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:20 | 只看該作者
Discovering Metadata,the data or dependencies among columns, can help understand and manage new datasets. In particular, the advent of “Big Data,” with the promise of data science and data analytics, and with the realization that business insight may be extracted from data, has brought many datasets into organizations’
18#
發(fā)表于 2025-3-24 14:54:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:34 | 只看該作者
Single-Column Analysis,ingle-column profiling tasks that we describe in more detail in the first part of this chapter. The second part discusses technical details and usage scenarios for certain single column profiling tasks. We refer the interested reader to Maydanchik [2007], a book addressing practitioners, for further
20#
發(fā)表于 2025-3-24 23:34:51 | 只看該作者
Dependency Discovery,. tables, respectively [Toman and Weddell, 2008]. If the UCCs, FDs, and INDs are known, data scientists and IT professionals can use them to define valid key and foreign-key constraints (e.g., for schema normalization or schema discovery). Traditionally, constraints, such as keys, foreign keys, and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珠海市| 邮箱| 成都市| 华亭县| 房产| 怀安县| 翼城县| 绵竹市| 柳州市| 安顺市| 阜新市| 梅河口市| 濮阳县| 武平县| 同江市| 宁武县| 南投市| 凤城市| 临湘市| 常州市| 和顺县| 营口市| 遵义市| 上栗县| 安平县| 淳化县| 芦溪县| 阳朔县| 安龙县| 中超| 隆回县| 蓬安县| 辽阳县| 许昌县| 忻城县| 方正县| 武鸣县| 岱山县| 犍为县| 应用必备| 平湖市|