找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Data Preprocessing in Data Mining; Salvador García,Julián Luengo,Francisco Herrera Book 2015 Springer International Publishing Switzerland

[復(fù)制鏈接]
樓主: 不友善
41#
發(fā)表于 2025-3-28 16:37:47 | 只看該作者
Book 2015ctly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to ana
42#
發(fā)表于 2025-3-28 18:58:35 | 只看該作者
Data Reduction, Mining is the “curse of dimensionality”, related with the usual high amount of attributes in data. Section?. deals with this problem. Data sampling and data simplification are introduced in Sects.?. and ., respectively, providing the basic notions on these topics for further analysis and explanation in subsequent chapters of the book.
43#
發(fā)表于 2025-3-29 00:12:14 | 只看該作者
44#
發(fā)表于 2025-3-29 07:05:10 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6accuracies are corrected. Section? . focuses in the latter task. Finally, some Data Mining applications involve some particular constraints like ranges for the data features, which may imply the normalization of the features (Sect.?.) or the transformation of the features of the data distribution (Sect.?.).
45#
發(fā)表于 2025-3-29 10:10:15 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6 problems that assume more complexity or hybridizations with respect to the classical learning paradigms. Finally, we establish the relationship between Data Preprocessing with Data Mining in Sect.?..
46#
發(fā)表于 2025-3-29 13:06:38 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6ter optimization models and derivatives methods related with feature selection, Sect.?. provides a summary on related and advanced topics, such as feature construction and feature extraction. An enumeration of some comparative experimental studies conducted in the specialized literature is included in Sect.?..
47#
發(fā)表于 2025-3-29 15:41:36 | 只看該作者
Introduction, problems that assume more complexity or hybridizations with respect to the classical learning paradigms. Finally, we establish the relationship between Data Preprocessing with Data Mining in Sect.?..
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 昭通市| 石狮市| 黔西| 高台县| 日喀则市| 延安市| 墨竹工卡县| 台安县| 东港市| 刚察县| 郓城县| 沙河市| 宾阳县| 绩溪县| 得荣县| 耒阳市| 广昌县| 新源县| 海丰县| 射阳县| 惠水县| 株洲市| 乌兰察布市| 蓝田县| 华安县| 临沧市| 中阳县| 开封市| 墨玉县| 丰镇市| 神农架林区| 行唐县| 普宁市| 吉林省| 孟州市| 八宿县| 瑞金市| 福安市| 铜陵市| 鄄城县|