找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining: Foundations and Intelligent Paradigms; VOLUME 2: Statistica Dawn E. Holmes,Lakhmi C. Jain Book 2012 Springer-Verlag Berlin Hei

[復制鏈接]
樓主: trace-mineral
11#
發(fā)表于 2025-3-23 10:24:33 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:32 | 只看該作者
Advanced Modelling Paradigms in Data Mining, information. Acquiring and maintaing these repositories relies on mainstream techniques, technology and methodologies. In this book we discuss a number of founding techniques and expand into intelligent paradigms.
13#
發(fā)表于 2025-3-23 18:50:30 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:11 | 只看該作者
A Visual Environment for Designing and Running Data Mining Workflows in the Knowledge Grid,Knowledge Grid, a service-oriented framework for distributed data mining on the Grid. DIS3GNO supports all the phases of a distributed data mining task, including composition, execution, and results visualization. The paper provides a description of DIS3GNO, some relevant use cases implemented by it, and a performance evaluation of the system.
15#
發(fā)表于 2025-3-24 05:12:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:15:32 | 只看該作者
Exceptional Model Mining,omehow exceptional. We discuss regression as well as classification models, and define quality measures that determine how exceptional a given model on a subgroup is. Our framework is general enough to be applied to many types of models, even from other paradigms such as association analysis and graphical modeling.
17#
發(fā)表于 2025-3-24 13:25:33 | 只看該作者
1868-4394 th informatics is presented in a handbook style.Written by l.There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 2: Core Topics including Statistical, Time-Series and Bayes
18#
發(fā)表于 2025-3-24 15:01:22 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:10 | 只看該作者
Sudeshna Roy,Ibrahim Seaga Shaws are the most popular neural network type, consisting on a feedforward network of processing neurons that are grouped into layers and connected by weighted links. On the other hand, SVM transforms the input variables into a high dimensional feature space and then finds the best hyperplane that mode
20#
發(fā)表于 2025-3-25 01:51:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-22 03:13
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨边| 楚雄市| 宣汉县| 垫江县| 安泽县| 广州市| 景泰县| 清河县| 新河县| 观塘区| 平泉县| 阿克陶县| 丘北县| 响水县| 即墨市| 洛宁县| 贞丰县| 钟祥市| 仁寿县| 安仁县| 新兴县| 澄城县| 江山市| 南丹县| 明水县| 衡阳市| 乌拉特前旗| 和硕县| 庄河市| 镇原县| 徐闻县| 丽江市| 晋中市| 浏阳市| 尖扎县| 永宁县| 军事| 珲春市| 潜江市| 寿光市| 丽水市|