找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Social Network Data; Nasrullah Memon,Jennifer Jie Xu,Hsinchun Chen Book 2010 Springer Science+Business Media, LLC 2010 Map

[復制鏈接]
樓主: 密度
31#
發(fā)表于 2025-3-26 21:36:49 | 只看該作者
Life and Livelihood in Sago-Growing Areasesigned to determine node status. Based on the model, we propose the use of a new measure based on team identification and random walks to determine status in knowledge networks. Using data obtained on collaborative patent networks, we find that the new measure performs better than others in identifying high-status inventors.
32#
發(fā)表于 2025-3-27 03:26:58 | 只看該作者
Running in the World Upside Down. Accordingly, we have shown how genetic algorithms (GA) can be applied to optimize the fuzzy membership functions. This chapter demonstrates how fuzzy logic can be applied to a deviation value to better represent the degree of restructuring.
33#
發(fā)表于 2025-3-27 05:38:44 | 只看該作者
Integrating Genetic Algorithms and Fuzzy Logic for Web Structure Optimization,. Accordingly, we have shown how genetic algorithms (GA) can be applied to optimize the fuzzy membership functions. This chapter demonstrates how fuzzy logic can be applied to a deviation value to better represent the degree of restructuring.
34#
發(fā)表于 2025-3-27 12:38:20 | 只看該作者
35#
發(fā)表于 2025-3-27 15:53:32 | 只看該作者
Identifying High-Status Nodes in Knowledge Networks,esigned to determine node status. Based on the model, we propose the use of a new measure based on team identification and random walks to determine status in knowledge networks. Using data obtained on collaborative patent networks, we find that the new measure performs better than others in identifying high-status inventors.
36#
發(fā)表于 2025-3-27 20:35:08 | 只看該作者
37#
發(fā)表于 2025-3-27 22:26:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:11:48 | 只看該作者
39#
發(fā)表于 2025-3-28 06:58:57 | 只看該作者
A Social Network-Based Recommender System (SNRS),our system by applying semantic filtering of social networks and validate its improvement via a class project experiment. In this experiment we demonstrate how relevant friends can be selected for inference based on the semantics of friend relationships and finer-grained user ratings. Such technolog
40#
發(fā)表于 2025-3-28 12:00:24 | 只看該作者
Modularity for Bipartite Networks,proposes a new bipartite modularity for evaluating community extraction from bipartite networks. Experimental results show that our new bipartite modularity is appropriate for discovering close-knit communities, and it is also useful for characterizing the communities.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
古浪县| 江陵县| 新竹市| 瑞昌市| 安乡县| 花垣县| 紫云| 临汾市| 武强县| 临洮县| 壤塘县| 尼木县| 霍山县| 沧源| 开阳县| 确山县| 芜湖市| 会宁县| 嘉定区| 从江县| 根河市| 祁阳县| 永宁县| 舟山市| 罗定市| 基隆市| 阿瓦提县| 马山县| 博白县| 黔西县| 洱源县| 东丽区| 夹江县| 永靖县| 施秉县| 内江市| 永丰县| 阜平县| 彰武县| 罗源县| 内乡县|