找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Social Network Data; Nasrullah Memon,Jennifer Jie Xu,Hsinchun Chen Book 2010 Springer Science+Business Media, LLC 2010 Map

[復(fù)制鏈接]
樓主: 密度
31#
發(fā)表于 2025-3-26 21:36:49 | 只看該作者
Life and Livelihood in Sago-Growing Areasesigned to determine node status. Based on the model, we propose the use of a new measure based on team identification and random walks to determine status in knowledge networks. Using data obtained on collaborative patent networks, we find that the new measure performs better than others in identifying high-status inventors.
32#
發(fā)表于 2025-3-27 03:26:58 | 只看該作者
Running in the World Upside Down. Accordingly, we have shown how genetic algorithms (GA) can be applied to optimize the fuzzy membership functions. This chapter demonstrates how fuzzy logic can be applied to a deviation value to better represent the degree of restructuring.
33#
發(fā)表于 2025-3-27 05:38:44 | 只看該作者
Integrating Genetic Algorithms and Fuzzy Logic for Web Structure Optimization,. Accordingly, we have shown how genetic algorithms (GA) can be applied to optimize the fuzzy membership functions. This chapter demonstrates how fuzzy logic can be applied to a deviation value to better represent the degree of restructuring.
34#
發(fā)表于 2025-3-27 12:38:20 | 只看該作者
35#
發(fā)表于 2025-3-27 15:53:32 | 只看該作者
Identifying High-Status Nodes in Knowledge Networks,esigned to determine node status. Based on the model, we propose the use of a new measure based on team identification and random walks to determine status in knowledge networks. Using data obtained on collaborative patent networks, we find that the new measure performs better than others in identifying high-status inventors.
36#
發(fā)表于 2025-3-27 20:35:08 | 只看該作者
37#
發(fā)表于 2025-3-27 22:26:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:11:48 | 只看該作者
39#
發(fā)表于 2025-3-28 06:58:57 | 只看該作者
A Social Network-Based Recommender System (SNRS),our system by applying semantic filtering of social networks and validate its improvement via a class project experiment. In this experiment we demonstrate how relevant friends can be selected for inference based on the semantics of friend relationships and finer-grained user ratings. Such technolog
40#
發(fā)表于 2025-3-28 12:00:24 | 只看該作者
Modularity for Bipartite Networks,proposes a new bipartite modularity for evaluating community extraction from bipartite networks. Experimental results show that our new bipartite modularity is appropriate for discovering close-knit communities, and it is also useful for characterizing the communities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榕江县| 白城市| 黄大仙区| 涞源县| 阿拉善右旗| 通山县| 涟水县| 景宁| 昌乐县| 曲松县| 社旗县| 云和县| 鄂伦春自治旗| 长泰县| 虎林市| 迭部县| 枝江市| 水富县| 通化县| 雅安市| 桦南县| 博爱县| 且末县| 郑州市| 蒙自县| 孝义市| 临高县| 墨竹工卡县| 广东省| 南部县| 科技| 宁武县| 丹江口市| 山东省| 府谷县| 墨江| 通渭县| 贺兰县| 新安县| 班玛县| 平阴县|