找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Geoinformatics; Methods and Applicat Guido Cervone,Jessica Lin,Nigel Waters Book 2014 Springer Science+Business Media New Y

[復(fù)制鏈接]
查看: 32456|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:18:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Mining for Geoinformatics
副標(biāo)題Methods and Applicat
編輯Guido Cervone,Jessica Lin,Nigel Waters
視頻videohttp://file.papertrans.cn/263/262949/262949.mp4
概述Presents a series of geoinformatic techniques and methodologies to solve real world problems of important societal value.Provides geoinformatic algorithms necessary to extract knowledge from massive a
圖書封面Titlebook: Data Mining for Geoinformatics; Methods and Applicat Guido Cervone,Jessica Lin,Nigel Waters Book 2014 Springer Science+Business Media New Y
描述The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value.?.Data Mining for Geoinformatics .addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens.This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the ar
出版日期Book 2014
關(guān)鍵詞Computational Methods; Data Mining; Earth Science; GIS; Geoinformatics; Geoscience; Machine Learning; Natur
版次1
doihttps://doi.org/10.1007/978-1-4614-7669-6
isbn_softcover978-1-4899-8574-3
isbn_ebook978-1-4614-7669-6
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

書目名稱Data Mining for Geoinformatics影響因子(影響力)




書目名稱Data Mining for Geoinformatics影響因子(影響力)學(xué)科排名




書目名稱Data Mining for Geoinformatics網(wǎng)絡(luò)公開度




書目名稱Data Mining for Geoinformatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Mining for Geoinformatics被引頻次




書目名稱Data Mining for Geoinformatics被引頻次學(xué)科排名




書目名稱Data Mining for Geoinformatics年度引用




書目名稱Data Mining for Geoinformatics年度引用學(xué)科排名




書目名稱Data Mining for Geoinformatics讀者反饋




書目名稱Data Mining for Geoinformatics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:54:32 | 只看該作者
tic algorithms necessary to extract knowledge from massive aThe rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementat
地板
發(fā)表于 2025-3-22 05:31:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:15:26 | 只看該作者
6#
發(fā)表于 2025-3-22 16:08:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:12:24 | 只看該作者
Assignments and Implemented Functionsms at predicting traffic jams in the city of Frankfurt am Main with help of a learned classifier. Our results show that taking into account simple and partial information about the traffic situation can lead to a huge gain of knowledge when using data mining techniques in the face of predicting of traffic situations.
8#
發(fā)表于 2025-3-23 00:34:47 | 只看該作者
GIS-Based Traffic Simulation Using OSM,ms at predicting traffic jams in the city of Frankfurt am Main with help of a learned classifier. Our results show that taking into account simple and partial information about the traffic situation can lead to a huge gain of knowledge when using data mining techniques in the face of predicting of traffic situations.
9#
發(fā)表于 2025-3-23 03:02:21 | 只看該作者
https://doi.org/10.1007/978-3-662-06297-5 comprising even a single modestly sized HSI data set. The discussion in this chapter will focus on the analysis process that generally applies to all HSI data and discuss the methods, approaches, and computational issues associated with analyzing hyperspectral imagery data.
10#
發(fā)表于 2025-3-23 05:35:52 | 只看該作者
Come impariamo a muoverci nell‘a(chǎn)mbiente?rsion simulations are performed using the SCIPUFF model, using model vertical profiles and ground meteorological data. The non-stationary time-series of the Fukushima release rate is determined for a period of 5 days with a 2-h resolution.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平江县| 东兰县| 禹州市| 安国市| 琼中| 双江| 扬州市| 敦化市| 溧水县| 镇平县| 天气| 昭平县| 秦皇岛市| 星座| 谢通门县| 定安县| 诸城市| 康平县| 花莲市| 同德县| 河池市| 太湖县| 卢龙县| 辰溪县| 托里县| 寿宁县| 拉萨市| 四会市| 宁河县| 衡阳县| 青海省| 沙坪坝区| 洱源县| 昌图县| 屏东县| 南漳县| 东源县| 正安县| 丘北县| 体育| 凤山县|