找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Business Applications; Longbing Cao,Philip S. Yu,Huaifeng Zhang Book 2009 Springer-Verlag US 2009 Business Decision Making

[復制鏈接]
樓主: adulation
11#
發(fā)表于 2025-3-23 10:10:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:26:05 | 只看該作者
https://doi.org/10.1057/9781137002693ion systems and target marketing systems in e-business. However, pattern-based clustering in large databases is still challenging. On the one hand, there can be a huge number of clusters and many of them can be redundant and thus make the pattern-based clustering ineffective. On the other hand, the
13#
發(fā)表于 2025-3-23 18:58:14 | 只看該作者
https://doi.org/10.1007/978-1-349-03354-6eparation, modeling, evaluation and deployment. Various data mining tasks are dependent on the human user for their execution. These tasks and activities that require human intelligence are not amenable to automation like tasks in other phases such as data preparation or modeling are. Nearly all Dat
14#
發(fā)表于 2025-3-24 00:14:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:30 | 只看該作者
https://doi.org/10.1007/978-1-349-03354-6a Mining methodologies acknowledge the importance of the human user but do not clearly delineate and explain the tasks where human intelligence should be leveraged or in what manner. In this chapter we propose to describe various tasks of the domain understanding phase which require human intelligence for their appropriate execution.
16#
發(fā)表于 2025-3-24 09:26:06 | 只看該作者
ssues in data mining, including trust, organizational and so.Data Mining for Business Applications. presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from “data-cen
17#
發(fā)表于 2025-3-24 12:35:16 | 只看該作者
Book 2009uccessful applications in the area. The contributions mark a paradigm shift from “data-centered pattern mining” to “domain driven actionable knowledge discovery” for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain probl
18#
發(fā)表于 2025-3-24 16:25:43 | 只看該作者
Role of Human Intelligence in Domain Driven Data Mininga Mining methodologies acknowledge the importance of the human user but do not clearly delineate and explain the tasks where human intelligence should be leveraged or in what manner. In this chapter we propose to describe various tasks of the domain understanding phase which require human intelligence for their appropriate execution.
19#
發(fā)表于 2025-3-24 21:39:37 | 只看該作者
20#
發(fā)表于 2025-3-25 01:42:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
共和县| 清远市| 泰宁县| 松滋市| 纳雍县| 南和县| 家居| 莱西市| 伊吾县| 博兴县| 广德县| 邯郸市| 麦盖提县| 偃师市| 广平县| 南乐县| 洛川县| 开封县| 广州市| 宣武区| 绩溪县| 上蔡县| 芜湖县| 延津县| 潮州市| 个旧市| 双城市| 郓城县| 玉山县| 新津县| 陇川县| 娄烦县| 宝坻区| 陈巴尔虎旗| 马公市| 凤山市| 宜兰市| 南宫市| 西贡区| 聂荣县| 黑水县|