找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Multi-agent Integration; Longbing Cao Book 2009 Springer-Verlag US 2009 AAMAS.Clustering.agent-enriched data mining.algori

[復制鏈接]
樓主: 債務人
41#
發(fā)表于 2025-3-28 16:52:53 | 只看該作者
The EMADS Extendible Multi-Agent Data Mining Frameworkbuted by many individuals and interacting under decentralized control, to address data mining requests. EMADS is seen both as an end user platform and a research tool. This chapter details the EMADS vision, the associated conceptual framework and the current implementation. Although EMADS may be app
42#
發(fā)表于 2025-3-28 21:08:12 | 只看該作者
A Multiagent Approach to Adaptive Continuous Analysis of Streaming Data in Complex Uncertain Environ-hard optimization problem for general metric spaces and is computationally intractable for real-world problems of practical interest. The primary contribution of this work is a multi-agent method for continuous agglomerative hierarchical clustering of streaming data, and a knowledge-based selforgan
43#
發(fā)表于 2025-3-29 02:28:49 | 只看該作者
Multiagent Systems for Large Data Clusteringvast volumes of data is available containing enormous amount of hidden information. Generating abstractions from such large data is a challenging data mining task. Efficient large data clustering schemes are important in dealing with such large data. In the current work we provide two different effi
44#
發(fā)表于 2025-3-29 06:05:38 | 只看該作者
A Multiagent, Multiobjective Clustering Algorithmios involving many agents. This approach is based on independent ant colonies, each one trying to optimize one particular feature objective. The multiobjective clustering process is performed by combining the results of all colonies. Experimental evaluation shows that MACC is able to find better res
45#
發(fā)表于 2025-3-29 11:05:14 | 只看該作者
Agent-Based Distributed Data Mining: A Surveyl with complex systems has revealed opportunities to improve distributed data mining systems in a number of ways. This paper surveys the integration of multi-agent system and distributed data mining, also known as agent-based distributed data mining, in terms of significance, system overview, existing systems, and research trends.
46#
發(fā)表于 2025-3-29 14:12:46 | 只看該作者
47#
發(fā)表于 2025-3-29 16:49:24 | 只看該作者
48#
發(fā)表于 2025-3-29 23:38:55 | 只看該作者
49#
發(fā)表于 2025-3-30 01:52:15 | 只看該作者
50#
發(fā)表于 2025-3-30 04:07:30 | 只看該作者
Ibrahima Diarrassouba,Youssouf Hadhbieb. In order to do this, each instance of the system is represented by a software agent, which is in charge of interacting with Web search engines and collaborating with the agents that represent other system instances, thereby using data mining techniques. As a result, SKC manages to build and maintain a network node to share knowledge.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
湖北省| 榆中县| 宁远县| 温州市| 温泉县| 利津县| 柳河县| 中山市| 甘洛县| 安泽县| 靖江市| 兖州市| 古丈县| 江源县| 武邑县| 苗栗县| 太和县| 鹤庆县| 泾川县| 清水河县| 巴楚县| 商都县| 巍山| 兴山县| 德昌县| 英吉沙县| 吴忠市| 永康市| 老河口市| 镇远县| 汾阳市| 蓝山县| 汉沽区| 交城县| 资溪县| 廉江市| 英吉沙县| 上饶市| 岳西县| 巴中市| 隆安县|