找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Knowledge Discovery for Big Data; Methodologies, Chall Wesley W. Chu Book 2014 Springer-Verlag Berlin Heidelberg 2014 Compu

[復(fù)制鏈接]
樓主: EVOKE
31#
發(fā)表于 2025-3-26 22:20:37 | 只看該作者
A Clustering Approach to Constrained Binary Matrix Factorization, binary matrix is minimal. BMF has served as an important tool in dimension reduction for high-dimensional data sets with binary attributes and has been successfully employed in numerous applications. In the existing literature on BMF, the matrix product is not required to be binary. We call this .
32#
發(fā)表于 2025-3-27 01:31:31 | 只看該作者
33#
發(fā)表于 2025-3-27 06:41:47 | 只看該作者
Book 2014 of data mining in the respective fields. This volume consists of nine chapters that address subjects ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction
34#
發(fā)表于 2025-3-27 10:10:23 | 只看該作者
35#
發(fā)表于 2025-3-27 16:28:11 | 只看該作者
36#
發(fā)表于 2025-3-27 19:27:57 | 只看該作者
37#
發(fā)表于 2025-3-27 22:02:03 | 只看該作者
38#
發(fā)表于 2025-3-28 06:10:33 | 只看該作者
InfoSearch: A Social Search Engine,he question, within the boundary of only one hop in a social network topology, how can we rank the results shared by friends. We develop . over the Facebook platform to leverage information shared by users in Facebook. We provide a comprehensive study of factors that may have a potential impact on s
39#
發(fā)表于 2025-3-28 09:57:30 | 只看該作者
A Generalized Approach for Social Network Integration and Analysis with Privacy Preservation,cuss aspects of sharing the insensitive and generalized information of social networks to support social network analysis while preserving the privacy at the same time. We discuss the generalization approach to construct a generalized social network in which only insensitive and generalized informat
40#
發(fā)表于 2025-3-28 11:35:39 | 只看該作者
A Clustering Approach to Constrained Binary Matrix Factorization,tionship between the BLP subproblem and clustering to develop an effective 2- approximation algorithm for CBMF when the underlying matrix has very low rank. The proposed algorithm can also provide a 2-approximation to rank-1 UBMF. We also develop a randomized algorithm for CBMF and estimate the appr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂平市| 东乡县| 沽源县| 城口县| 上杭县| 眉山市| 永兴县| 宁明县| 平谷区| 屏山县| 沧州市| 象州县| 长治县| 天柱县| 松原市| 平塘县| 张家口市| 富川| 五寨县| 毕节市| 游戏| 兴义市| 翼城县| 望江县| 水城县| 三河市| 永定县| 赤壁市| 和硕县| 宜兰市| 无锡市| 隆子县| 黔南| 土默特右旗| 眉山市| 瑞丽市| 加查县| 喀什市| 彭水| 太白县| 额敏县|