找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques; Evangelos Triantaphyllou,Giovanni Felici Book 2006 Spri

[復制鏈接]
查看: 54301|回復: 66
樓主
發(fā)表于 2025-3-21 20:02:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques
編輯Evangelos Triantaphyllou,Giovanni Felici
視頻videohttp://file.papertrans.cn/263/262930/262930.mp4
概述Provides a unique perspective into the core of data mining and knowledge discovery (DM and KD), combining many theoretical foundations for the behavior and capabilities of various DM and KD methods.In
叢書名稱Massive Computing
圖書封面Titlebook: Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques;  Evangelos Triantaphyllou,Giovanni Felici Book 2006 Spri
描述2. Some Background Information 49 3. Definitions and Terminology 52 4. The One Clause at a Time (OCAT) Approach 54 4. 1 Data Binarization 54 4. 2 The One Clause at a Time (OCAT) Concept 58 4. 3 A Branch-and-Bound Approach for Inferring Clauses 59 4. 4 Inference of the Clauses for the Illustrative Example 62 4. 5 A Polynomial Time Heuristic for Inferring Clauses 65 5. A Guided Learning Approach 70 6. The Rejectability Graph of Two Collections of Examples 72 6. 1 The Definition of the Rej ectability Graph 72 6. 2 Properties of the Rejectability Graph 74 6. 3 On the Minimum Clique Cover of the Rej ectability Graph 76 7. Problem Decomposition 77 7. 1 Connected Components 77 7. 2 Clique Cover 78 8. An Example of Using the Rejectability Graph 79 9. Conclusions 82 References 83 Author‘s Biographical Statement 87 Chapter 3 AN INCREMENTAL LEARNING ALGORITHM FOR INFERRING LOGICAL RULES FROM EXAMPLES IN THE FRAMEWORK OF THE COMMON REASONING PROCESS, by X. Naidenova 89 1. Introduction 90 2. A Model of Rule-Based Logical Inference 96 2. 1 Rules Acquired from Experts or Rules of the First Type 97 2. 2 Structure of the Knowledge Base 98 2. 3 Reasoning Operations for Using Logical Rules of the Fir
出版日期Book 2006
關鍵詞BAYES; Data mining; Knowledge discovery; LA; Pattern Recognition; Rule induction; STATISTICA
版次1
doihttps://doi.org/10.1007/0-387-34296-6
isbn_softcover978-1-4419-4173-2
isbn_ebook978-0-387-34296-2Series ISSN 1569-2698 Series E-ISSN 2468-8738
issn_series 1569-2698
copyrightSpringer-Verlag US 2006
The information of publication is updating

書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques影響因子(影響力)




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques影響因子(影響力)學科排名




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques網(wǎng)絡公開度




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques網(wǎng)絡公開度學科排名




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques被引頻次




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques被引頻次學科排名




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques年度引用




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques年度引用學科排名




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques讀者反饋




書目名稱Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:19:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:19:25 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:44 | 只看該作者
5#
發(fā)表于 2025-3-22 09:24:14 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:47 | 只看該作者
Yujiro Nishioka,Junichi Shindohecision tree induction (SODI) algorithm, which uses conjunctive and disjunctive combinations of two attributes for improved decision tree induction in nominal databases. We show via numerical examples that in many cases this generates more accurate classification models and easier to interpret decision trees and rules.
7#
發(fā)表于 2025-3-22 17:34:14 | 只看該作者
Run-Time Data Structures in GPenSIMer is interested. We apply fuzzy rules to adapt user queries by fuzzy inference within a sound and complete fuzzy logic system. We show some empirical results indicating that using our unified framework, the induction and application of fuzzy rules produces a more effective textual information retrieval system.
8#
發(fā)表于 2025-3-22 23:46:54 | 只看該作者
9#
發(fā)表于 2025-3-23 02:46:30 | 只看該作者
Rule Induction Through Discrete Support Vector Decision Trees,ilt by means of a multivariate split derived at each node from the approximate solution of the discrete SVM. Computational tests on well-known benchmark datasets indicate that our classifier achieves a superior trade-off between accuracy and complexity of the induced rules, outperforming other competing approaches.
10#
發(fā)表于 2025-3-23 07:32:47 | 只看該作者
Multi-Attribute Decision Trees and Decision Rules,ecision tree induction (SODI) algorithm, which uses conjunctive and disjunctive combinations of two attributes for improved decision tree induction in nominal databases. We show via numerical examples that in many cases this generates more accurate classification models and easier to interpret decision trees and rules.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三门峡市| 修水县| 马山县| 资源县| 阿城市| 曲阳县| 图们市| 雷山县| 高邑县| 青阳县| 临城县| 普安县| 邻水| 泌阳县| 胶南市| 来凤县| 镇宁| 封开县| 安化县| 宝山区| 酉阳| 佛学| 兴业县| 嫩江县| 西安市| 高要市| 丽江市| 漳平市| 邵武市| 河津市| 揭西县| 乡城县| 台北县| 漳浦县| 万州区| 乳山市| 阆中市| 西丰县| 车致| 朝阳区| 扎兰屯市|