找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Computational Intelligence; Abraham Kandel,Mark Last,Horst Bunke Book 2001 Physica-Verlag Heidelberg 2001 computational in

[復(fù)制鏈接]
樓主: culinary
21#
發(fā)表于 2025-3-25 05:32:12 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:54 | 只看該作者
Maria Pia De Padova,Antonella Tostil research areas such as statistics, artificial intelligence, machine learning, and soft computing have contributed to the arsenal of methods for data mining. In this paper, however, we focus on neuro-fuzzy methods for rule learning. In our opinion, fuzzy approaches can play an important role in dat
23#
發(fā)表于 2025-3-25 12:46:40 | 只看該作者
24#
發(fā)表于 2025-3-25 17:48:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:41 | 只看該作者
https://doi.org/10.1007/3-540-30223-9echnique for the mining of such rules in databases containing both types of data. This technique, which we call Fuzzy Miner, performs its tasks by the use of fuzzy logic, a set of transformation functions, and by residual analysis. With the transformation functions, new attributes and new item types
26#
發(fā)表于 2025-3-26 04:07:14 | 只看該作者
27#
發(fā)表于 2025-3-26 08:20:08 | 只看該作者
Maria Pia De Padova,Antonella Tostifor data-based rule generation has been demonstrated impressively in numerous real-world tasks. However, there are still difficulties in generating small interpretable rule bases efficiently, especially for applications with many input variables. The Fuzzy-ROSA method presented here was developed to
28#
發(fā)表于 2025-3-26 10:24:06 | 只看該作者
J. Lakatos,K. K?ll?,G. Skaliczki,G. Holnapy practitioners. Many efficient algorithms have been proposed in the literature, e.g., Apriori, Partition, DIC, for mining association rules in the context of marketbasket analysis. They are all based on apriori methods, i.e., pruning the itemset lattice, and requires multiple database accesses. Howe
29#
發(fā)表于 2025-3-26 14:13:44 | 只看該作者
Metabolic and Endocrine Diseases,ning Technique (DPT1) generates a classifier model by the use of Single Attribute Partitioning Method and neural network training. Single Attribute Partitioning Technique partitions a single input dimension at a time using proportional analysis. The second Dimensional Partitioning Technique (DPT2),
30#
發(fā)表于 2025-3-26 17:01:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西林县| 永泰县| 新民市| 鄄城县| 承德市| 五华县| 始兴县| 卫辉市| 都昌县| 兴城市| 睢宁县| 巴塘县| 上饶县| 民和| 静宁县| 玛纳斯县| 平泉县| 伊川县| 左权县| 徐闻县| 建平县| 章丘市| 大城县| 寿光市| 文成县| 民乐县| 长岛县| 贡嘎县| 麻江县| 呼玛县| 革吉县| 沈阳市| 吉林省| 兖州市| 杂多县| 河西区| 龙井市| 沅江市| 陆良县| 广平县| 林甸县|