找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Bioinformatics; First International Mehmet M. Dalkilic,Sun Kim,Jiong Yang Conference proceedings 2006 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: 貶損
51#
發(fā)表于 2025-3-30 09:53:08 | 只看該作者
Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray with applying current decision tree implementations for high-dimensional data sets is their tendency to assign the same scores for multiple attributes. In this paper, we propose two distribution-dependant criteria for decision trees to improve their usefulness for microarray classification.
52#
發(fā)表于 2025-3-30 14:45:24 | 只看該作者
53#
發(fā)表于 2025-3-30 16:44:41 | 只看該作者
Nate Probasco,Estelle Paranque,Claire Jowittounts for the within-class variability. The differential expression is measured by a distribution-free silhouette width which was first introduced into the SAGE differential expression analysis. It is shown that the silhouette width is more appropriate and is easier to compute than the error rate.
54#
發(fā)表于 2025-3-30 23:38:00 | 只看該作者
55#
發(fā)表于 2025-3-31 04:46:41 | 只看該作者
56#
發(fā)表于 2025-3-31 06:02:31 | 只看該作者
Discovering Consensus Patterns in Biological Databases,l clustering algorithm makes it scalable and efficient. Experiments to discover motifs and tandem repeats on real biological databases show significant performance gain over non-progressive clustering techniques.
57#
發(fā)表于 2025-3-31 12:32:48 | 只看該作者
Bioinformatics at Microsoft Research,this trend is set to transform the practice of science in our lifetimes. Conversely, biological systems are a rich source of ideas that will transform the future of computing..In addition to supporting academic research in the life sciences, Microsoft Research is a source of tools and technologies w
58#
發(fā)表于 2025-3-31 15:42:02 | 只看該作者
A Novel Approach for Effective Learning of Cluster Structures with Biological Data Applications,ne expression data in a systematic way. In particular, the problem of finding groups of co-expressed genes or samples has been largely investigated due to its usefulness in characterizing unknown gene functions or performing more sophisticated tasks, such as modeling biological pathways. Nevertheles
59#
發(fā)表于 2025-3-31 19:13:52 | 只看該作者
Subspace Clustering of Microarray Data Based on Domain Transformation, technologies, we focus our attention on gene expression datasets mining. In particular, given that genes are often co-expressed under subsets of experimental conditions, we present a novel subspace clustering algorithm. In contrast to previous approaches, our method is based on the observation that
60#
發(fā)表于 2025-3-31 23:37:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘阴县| 澄迈县| 营口市| 民丰县| 沈丘县| 竹山县| 南昌市| 大冶市| 宜兴市| 安龙县| 南漳县| 牙克石市| 满城县| 石柱| 闽侯县| 南和县| 仁化县| 葫芦岛市| 定结县| 乌苏市| 日照市| 佛学| 息烽县| 稷山县| 民乐县| 甘德县| 常熟市| 眉山市| 崇文区| 西青区| 宜兴市| 文安县| 淄博市| 澄迈县| 博爱县| 涪陵区| 南涧| 静海县| 乐都县| 哈巴河县| 秭归县|