找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Big Data; 5th International Co Ying Tan,Yuhui Shi,Milan Tuba Conference proceedings 2020 Springer Nature Singapore Pte Ltd.

[復制鏈接]
查看: 45653|回復: 46
樓主
發(fā)表于 2025-3-21 16:21:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining and Big Data
副標題5th International Co
編輯Ying Tan,Yuhui Shi,Milan Tuba
視頻videohttp://file.papertrans.cn/263/262915/262915.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Data Mining and Big Data; 5th International Co Ying Tan,Yuhui Shi,Milan Tuba Conference proceedings 2020 Springer Nature Singapore Pte Ltd.
描述This book constitutes refereed proceedings of the 5th International Conference on Data Mining and Big Data, DMBD 2020, held in July 2020. Due to the COVID-19 pandemic the conference was held in a fully virtual format.?.The 7 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 39 submissions. The papers present the latest research on?advantages in theories, technologies, and applications in data mining and big data. The volume covers many aspects of data mining and big data as well as intelligent computing methods applied to all fields of computer science, machine learning, data mining and knowledge discovery, data science, etc..
出版日期Conference proceedings 2020
關鍵詞artificial intelligence; association rules; communication channels (information theory); communication
版次1
doihttps://doi.org/10.1007/978-981-15-7205-0
isbn_softcover978-981-15-7204-3
isbn_ebook978-981-15-7205-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Data Mining and Big Data影響因子(影響力)




書目名稱Data Mining and Big Data影響因子(影響力)學科排名




書目名稱Data Mining and Big Data網絡公開度




書目名稱Data Mining and Big Data網絡公開度學科排名




書目名稱Data Mining and Big Data被引頻次




書目名稱Data Mining and Big Data被引頻次學科排名




書目名稱Data Mining and Big Data年度引用




書目名稱Data Mining and Big Data年度引用學科排名




書目名稱Data Mining and Big Data讀者反饋




書目名稱Data Mining and Big Data讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:48:36 | 只看該作者
Relevance: Knowledge on Hand and in Handechnical specifications of an object, thus allowing to systematize sources of influence. Using statistical data archives to train, the neural network approximates key sensors data to identify the model of the controllable object and optimize it.
板凳
發(fā)表于 2025-3-22 01:50:28 | 只看該作者
Conference proceedings 2020OVID-19 pandemic the conference was held in a fully virtual format.?.The 7 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 39 submissions. The papers present the latest research on?advantages in theories, technologies, and applications in data mining
地板
發(fā)表于 2025-3-22 08:38:43 | 只看該作者
The AIDS Pandemic and Human Rightstructure, RN-list, for creating rare itemsets. To evaluate the performance of the proposed method, we conduct extensive experiments on sparse and dense datasets. The results show that the RPP algorithm is around an order of magnitude better than the RP-growth algorithm.
5#
發(fā)表于 2025-3-22 10:51:58 | 只看該作者
6#
發(fā)表于 2025-3-22 14:48:30 | 只看該作者
7#
發(fā)表于 2025-3-22 19:36:38 | 只看該作者
RPP Algorithm: A Method for Discovering Interesting Rare Itemsets,tructure, RN-list, for creating rare itemsets. To evaluate the performance of the proposed method, we conduct extensive experiments on sparse and dense datasets. The results show that the RPP algorithm is around an order of magnitude better than the RP-growth algorithm.
8#
發(fā)表于 2025-3-23 00:45:08 | 只看該作者
Application of Decision Tree Algorithm Based on Clustering and Entropy Method Level Division for Reree model that affects regional economic indicators. Through the visualization of the tree and the analysis of feature importance, you can intuitively see the main indicators that affect the regional economy, thereby achieving the research goals.
9#
發(fā)表于 2025-3-23 04:11:32 | 只看該作者
Research on PM2.5 Integrated Prediction Model Based on Lasso-RF-GAM,AM model to run more efficiently. The deviance explained by the model reaches 91.5%, which is higher than only using a subset of RF-RFE. This model also reveals the influence of various factors on PM., which provides the decision-making basis for haze control.
10#
發(fā)表于 2025-3-23 07:31:22 | 只看該作者
Choosing Among Projects of Actionodel training. Finally, a network model was built and experiments were performed using . and . activation functions. The experimental results verify the effectiveness of the proposed method through the distribution of histograms and the curve comparison diagrams of model training.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-26 08:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喜德县| 西青区| 林西县| 舞阳县| 松滋市| 酒泉市| 子洲县| 贵港市| 车险| 福清市| 乡宁县| 犍为县| 崇明县| 法库县| 隆林| 门源| 温泉县| 易门县| 大冶市| 天祝| 兴山县| 大冶市| 大余县| 延安市| 五华县| 双峰县| 威远县| 长岭县| 曲靖市| 长宁区| 湖北省| 延长县| 汤阴县| 孝昌县| 石楼县| 蓝山县| 永福县| 名山县| 开平市| 凤凰县| 巴中市|