找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining Algorithms in C++; Data Patterns and Al Timothy Masters Book 2018 Timothy Masters 2018 Data Mining.big data.algorithms.C++.prog

[復(fù)制鏈接]
查看: 32096|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:59:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Mining Algorithms in C++
副標(biāo)題Data Patterns and Al
編輯Timothy Masters
視頻videohttp://file.papertrans.cn/263/262904/262904.mp4
概述An expert-driven data mining and algorithms in C++ book.Data mining is an important topic in big data.Algorithms are also a critical topic of growing importance
圖書封面Titlebook: Data Mining Algorithms in C++; Data Patterns and Al Timothy Masters Book 2018 Timothy Masters 2018 Data Mining.big data.algorithms.C++.prog
描述Discover hidden relationships among the variables in your data, and learn how to exploit these relationships.? This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications.? All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code..Many of these techniques are recent developments, still not in widespread use.? Others are standard algorithms given a fresh look.? In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program.? The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work..What You‘ll Learn.Use Monte-Carlo permutation tests?to provide statistically sound assessments of relationships present in your data.Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data.Work with feature weighting as regularized energy-based learning?to rank variables according to their predictive power w
出版日期Book 2018
關(guān)鍵詞Data Mining; big data; algorithms; C++; programming; mining; software; code; technique
版次1
doihttps://doi.org/10.1007/978-1-4842-3315-3
isbn_softcover978-1-4842-3314-6
isbn_ebook978-1-4842-3315-3
copyrightTimothy Masters 2018
The information of publication is updating

書目名稱Data Mining Algorithms in C++影響因子(影響力)




書目名稱Data Mining Algorithms in C++影響因子(影響力)學(xué)科排名




書目名稱Data Mining Algorithms in C++網(wǎng)絡(luò)公開度




書目名稱Data Mining Algorithms in C++網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Mining Algorithms in C++被引頻次




書目名稱Data Mining Algorithms in C++被引頻次學(xué)科排名




書目名稱Data Mining Algorithms in C++年度引用




書目名稱Data Mining Algorithms in C++年度引用學(xué)科排名




書目名稱Data Mining Algorithms in C++讀者反饋




書目名稱Data Mining Algorithms in C++讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:40:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:46:58 | 只看該作者
Displaying Relationship Anomalies,asy to detect, see, and describe. In prior chapters we examined measures that go beyond such naiveté and are able to detect more subtle dependencies between variables, in other words, anomalies in otherwise uncomplicated relationships. But what if we want a visual representation of the pattern that
地板
發(fā)表于 2025-3-22 06:31:37 | 只看該作者
5#
發(fā)表于 2025-3-22 12:21:27 | 只看該作者
Book 2018ationships present in your data.Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data.Work with feature weighting as regularized energy-based learning?to rank variables according to their predictive power w
6#
發(fā)表于 2025-3-22 13:22:24 | 只看該作者
Book 2018-mining algorithms that are effective in a wide variety of prediction and classification applications.? All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code..Many of these techniques are recent developmen
7#
發(fā)表于 2025-3-22 20:33:59 | 只看該作者
8#
發(fā)表于 2025-3-22 22:09:44 | 只看該作者
f growing importanceDiscover hidden relationships among the variables in your data, and learn how to exploit these relationships.? This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications.? All algorithms include an
9#
發(fā)表于 2025-3-23 02:54:39 | 只看該作者
10#
發(fā)表于 2025-3-23 07:39:07 | 只看該作者
Information and Entropy,find, present, and capitalize on such relationships. In this chapter, we focus primarily on a specific aspect of this task: evaluating and perhaps improving the information content of a measured variable. What is information? This term has a rigorously defined meaning, which we will now pursue.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 21:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
京山县| 思南县| 乐亭县| 临邑县| 青海省| 清丰县| 南充市| 道孚县| 石城县| 蓬溪县| 九龙城区| 绥滨县| 化隆| 大渡口区| 育儿| 汶川县| 长丰县| 乌兰浩特市| 黑河市| 平安县| 阜平县| 普宁市| 晋中市| 神农架林区| 沐川县| 和田县| 胶州市| 曲松县| 青浦区| 汨罗市| 板桥市| 衢州市| 青铜峡市| 伊川县| 中超| 鲁山县| 庆元县| 永吉县| 柘荣县| 麻城市| 乐清市|