找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering and Intelligent Computing; Proceedings of 5th I Vikrant Bhateja,Lai Khin Wee,T. M. Rajesh Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: 監(jiān)督
21#
發(fā)表于 2025-3-25 07:11:33 | 只看該作者
Physiological Basis of Insomniaures. This project proposes a hybrid similarity measure more precisely a linear combination of similarity measures that utilize the advantage of each measure as well as by taking user rating preferences into consideration, hence able to achieve the least RMSE, MAE score for the datasets taken. The d
22#
發(fā)表于 2025-3-25 09:53:42 | 只看該作者
23#
發(fā)表于 2025-3-25 15:17:24 | 只看該作者
Ruth Q. Wolever,Jennifer L. Bests machine learning models for analyzing, predicting, and classifying the breast cancer cells into benign and malignant cells. The paper compares the performance of these models with respect to their accuracy.
24#
發(fā)表于 2025-3-25 17:32:12 | 只看該作者
https://doi.org/10.1007/978-3-319-17139-5in memorizing long sequences. In this study, we have used TransU-Net, an architecture that combines the merits of both transformer and CNN for the segmenting images of ., an epiphyte, acquired with drones. The segmentation outputs generated from the trained models were evaluated with Dice score and
25#
發(fā)表于 2025-3-25 22:16:29 | 只看該作者
Heather K. Hood MA,Martin M. Antony PhDobject’s interactions, alternative ALT, and iterative LOOP and converts them into its amenable Activity-Table. Further, the automated tool scans the Activity-Table and then generates an equivalent activity diagram.
26#
發(fā)表于 2025-3-26 02:42:41 | 只看該作者
27#
發(fā)表于 2025-3-26 07:25:39 | 只看該作者
Derivation of DUS-Defined Physiological and Color Features of Okra Fruit Using Machine Vision Technl the images of okra fruit were captured using the same setup. Digital image processing and analysis technologies have been applied to derive the specified morphological and color-based DUS characteristics. The proposed methodology is objectively providing the DUS characteristics with fewer human in
28#
發(fā)表于 2025-3-26 10:48:58 | 只看該作者
29#
發(fā)表于 2025-3-26 14:20:16 | 只看該作者
30#
發(fā)表于 2025-3-26 18:35:00 | 只看該作者
Analysis and Prediction of Breast Cancer using Multi-model Classification Approach,s machine learning models for analyzing, predicting, and classifying the breast cancer cells into benign and malignant cells. The paper compares the performance of these models with respect to their accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡市| 祁东县| 乌兰浩特市| 芦山县| 松潘县| 永定县| 四川省| 萍乡市| 商南县| 梅州市| 永年县| 喜德县| 合肥市| 鹤山市| 阜城县| 九江市| 曲阜市| 类乌齐县| 东平县| 永胜县| 木里| 临江市| 梁河县| 卓尼县| 诸暨市| 广东省| 西吉县| 宁陕县| 宜兰市| SHOW| 密云县| 乌兰浩特市| 龙门县| 伊川县| 义马市| 伊金霍洛旗| 马关县| 沂水县| 东宁县| 巩义市| 芮城县|