找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis; First International Andrew Melbourne,Roxa

[復(fù)制鏈接]
樓主: ISSUE
11#
發(fā)表于 2025-3-23 10:14:55 | 只看該作者
Multi-view Image Reconstruction: Application to Fetal Ultrasound Compoundingighly influences the appearance of the image. View-dependent artifacts such as shadows can obstruct parts of the anatomy of interest and degrade the quality and usefulness of the image. If multiple images of the same structure are acquired from different views, view-dependent artifacts can be minimi
12#
發(fā)表于 2025-3-23 15:51:01 | 只看該作者
EchoFusion: Tracking and Reconstruction of Objects in 4D Freehand Ultrasound Imaging Without Externats such as acoustic shadows. Compounding of overlapping 3D US acquisitions into a high-resolution volume can extend the field of view and remove image artefacts, which is useful for retrospective analysis including population based studies. However, such volume reconstructions require information ab
13#
發(fā)表于 2025-3-23 18:12:17 | 只看該作者
Better Feature Matching for Placental Panorama Constructionterization of problematic vascular formations with a fetal endoscope. This surgery is made difficult by the poor visibility conditions of the intrauterine environment and the limited field of view of the endoscope. There have been efforts to address the limited field of view of fetal endoscopes with
14#
發(fā)表于 2025-3-24 01:21:52 | 只看該作者
15#
發(fā)表于 2025-3-24 02:58:35 | 只看該作者
LSTM Spatial Co-transformer Networks for Registration of 3D Fetal US and MR Brain Imagesinspired by “Spatial Transformer Networks”. Images are co-aligned to a dual modality spatio-temporal atlas, where computational image analysis may be performed in the future. Our results show better alignment accuracy compared to “Self-Similarity Context descriptors”, a state-of-the-art method devel
16#
發(fā)表于 2025-3-24 09:17:49 | 只看該作者
17#
發(fā)表于 2025-3-24 13:35:32 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:49 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:01 | 只看該作者
https://doi.org/10.1007/978-3-031-35579-0testing interventions which are designed to maintain or improve muscle mass. The purpose of this paper is to report on an automated method of MRI-based thigh muscle segmentation framework that minimizes longitudinal deviation by using femur segmentation as a reference in a two-phase registration. Im
20#
發(fā)表于 2025-3-25 02:27:40 | 只看該作者
https://doi.org/10.1007/978-3-031-35579-0rs training of automated detectors challenging. Here, we present a transfer learning approach using convolutional neural networks to detect bone lesions in computed tomography imaging data. We compare different learning approaches, and demonstrate that pretraining a convolutional neural network on n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 长垣县| 龙门县| 香格里拉县| 阜南县| 中山市| 双牌县| 含山县| 梅州市| 丽江市| 永吉县| 西藏| 桦甸市| 内江市| 务川| 宣城市| 同德县| 汕头市| 独山县| 额济纳旗| 云龙县| 彰化市| 泸州市| 同德县| 那曲县| 台山市| 奉新县| 汾西县| 明光市| 胶南市| 京山县| 桑植县| 桂平市| 汶上县| 惠安县| 济阳县| 内江市| 辽中县| 牡丹江市| 金乡县| 同江市|