找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewa; 5th ECML PKDD Worksh Wei Lee Woon,Zey

[復(fù)制鏈接]
樓主: Animosity
41#
發(fā)表于 2025-3-28 17:01:00 | 只看該作者
42#
發(fā)表于 2025-3-28 20:13:08 | 只看該作者
An Approach for Erosion and Power Loss Prediction of Wind Turbines Using Big Data Analytics,In this paper, we propose the Wind Turbine Erosion Predictor (WTEP) System that uses big data analytics to handle the data volume, variety, and veracity and estimate the turbines erosion rate, in addition to the total power loss. WTEP proposes an optimized flexible multiple regression technique. Exp
43#
發(fā)表于 2025-3-28 23:14:24 | 只看該作者
44#
發(fā)表于 2025-3-29 04:06:48 | 只看該作者
,Improving Time-Series Rule Matching Performance for Detecting Energy Consumption?Patterns,Euclidean distance to search candidate rules occurrences. However this distance is not adapted for energy consumption data because occurrences of patterns should have different duration. We propose to use more “elastic” distance measures. In this paper we will compare the detection performance of pr
45#
發(fā)表于 2025-3-29 09:24:04 | 只看該作者
Probabilistic Wind Power Forecasting by Using Quantile Regression Analysis,esents a probabilistic wind power forecasting method based on local quantile regression with Gaussian distribution. The method is applied to obtain probabilistic wind power forecasts, within the course of the Wind Power Monitoring and Forecast Center for Turkey (R?TM) project, which has been realize
46#
發(fā)表于 2025-3-29 12:32:16 | 只看該作者
47#
發(fā)表于 2025-3-29 18:13:29 | 只看該作者
48#
發(fā)表于 2025-3-29 20:05:54 | 只看該作者
I. Gohberg,M. A. Kaashoek,S. Goldbergire the resulting energy consumption, self-consumption, and self-sufficiency. The results show an increase of individual self-consumption between 17% and 348% and self-sufficiency between 18% and 72%. This results in an additional monetary benefit for the occupants based on the transition proposals
49#
發(fā)表于 2025-3-30 03:36:27 | 只看該作者
I. Gohberg,M. A. Kaashoek,S. GoldbergEuclidean distance to search candidate rules occurrences. However this distance is not adapted for energy consumption data because occurrences of patterns should have different duration. We propose to use more “elastic” distance measures. In this paper we will compare the detection performance of pr
50#
發(fā)表于 2025-3-30 04:40:49 | 只看該作者
I. Gohberg,M. A. Kaashoek,S. Goldbergesents a probabilistic wind power forecasting method based on local quantile regression with Gaussian distribution. The method is applied to obtain probabilistic wind power forecasts, within the course of the Wind Power Monitoring and Forecast Center for Turkey (R?TM) project, which has been realize
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安乡县| 五台县| 玉门市| 台北市| 湖北省| 运城市| 重庆市| 荃湾区| 石柱| 米易县| 临海市| 岳西县| 太湖县| 蓬莱市| 邹城市| 峡江县| 苗栗县| 西吉县| 左云县| 广丰县| 康马县| 剑河县| 南乐县| 芜湖市| 伊宁县| 山东省| 天祝| 通州区| 登封市| 华阴市| 章丘市| 平顶山市| 临海市| 松原市| 宕昌县| 尚志市| 亳州市| 左权县| 济阳县| 屯门区| 桑植县|