找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analytics; Models and Algorithm Thomas A. Runkler Textbook 20162nd edition Springer Fachmedien Wiesbaden 2016 data mining.knowledge di

[復(fù)制鏈接]
查看: 37102|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:54:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Analytics
副標(biāo)題Models and Algorithm
編輯Thomas A. Runkler
視頻videohttp://file.papertrans.cn/263/262676/262676.mp4
概述A comprehensive introduction.Enabling the reader to design and implement data analytics solutions for real-world applications.Written by a researcher from industry with substantial experience with rea
圖書封面Titlebook: Data Analytics; Models and Algorithm Thomas A. Runkler Textbook 20162nd edition Springer Fachmedien Wiesbaden 2016 data mining.knowledge di
描述This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.
出版日期Textbook 20162nd edition
關(guān)鍵詞data mining; knowledge discovery; algorithms; forecasting; classification; clustering; business intelligen
版次2
doihttps://doi.org/10.1007/978-3-658-14075-5
isbn_ebook978-3-658-14075-5
copyrightSpringer Fachmedien Wiesbaden 2016
The information of publication is updating

書目名稱Data Analytics影響因子(影響力)




書目名稱Data Analytics影響因子(影響力)學(xué)科排名




書目名稱Data Analytics網(wǎng)絡(luò)公開度




書目名稱Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Analytics被引頻次




書目名稱Data Analytics被引頻次學(xué)科排名




書目名稱Data Analytics年度引用




書目名稱Data Analytics年度引用學(xué)科排名




書目名稱Data Analytics讀者反饋




書目名稱Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:46 | 只看該作者
Clustering,Complex relational clusters can be found by kernelization. Cluster tendency assessment finds out if the data contain clusters at all, and cluster validity measures help identify an appropriate number of clusters. Clustering can also be done by heuristic methods such as the self-organizing map.
板凳
發(fā)表于 2025-3-22 03:27:38 | 只看該作者
地板
發(fā)表于 2025-3-22 04:43:24 | 只看該作者
Data and Relations,rlap, Dice, Jaccard, Tanimoto). Sequences can be analyzed using sequence relations (like Hamming, Levenshtein, edit distance). Data can be extracted from continuous signals by sampling and quantization. The Nyquist condition allows sampling without loss of information.
5#
發(fā)表于 2025-3-22 12:06:14 | 只看該作者
Data Preprocessing, different effectiveness and computational complexities: moving statistical measures, discrete linear filters, finite impule response, infinite impulse response. Data features with different ranges often need to be standardized or transformed.
6#
發(fā)表于 2025-3-22 16:31:56 | 只看該作者
7#
發(fā)表于 2025-3-22 18:08:53 | 只看該作者
8#
發(fā)表于 2025-3-22 21:44:55 | 只看該作者
Classification,are presented in detail: the naive Bayes classifier, linear discriminant analysis, the support vector machine (SVM) using the kernel trick, nearest neighbor classifiers, learning vector quantification, and hierarchical classification using regression trees.
9#
發(fā)表于 2025-3-23 04:25:36 | 只看該作者
ment data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.978-3-658-14075-5
10#
發(fā)表于 2025-3-23 09:05:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚松县| 神木县| 门头沟区| 白朗县| 南丰县| 安国市| 裕民县| 乐业县| 两当县| 襄垣县| 东宁县| 清徐县| 天等县| 哈尔滨市| 顺义区| 元氏县| 连平县| 成安县| 福海县| 昌邑市| 衡东县| 扬州市| 凤翔县| 安国市| 长葛市| 屏边| 潼关县| 浦城县| 板桥市| 南充市| 郑州市| 承德县| 朔州市| 泗水县| 五华县| 邹平县| 台东市| 淅川县| 泰宁县| 金沙县| 永州市|