找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analysis, Machine Learning and Knowledge Discovery; Myra Spiliopoulou,Lars Schmidt-Thieme,Ruth Janning Conference proceedings 2014 Sp

[復(fù)制鏈接]
查看: 39111|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:45:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery
編輯Myra Spiliopoulou,Lars Schmidt-Thieme,Ruth Janning
視頻videohttp://file.papertrans.cn/263/262674/262674.mp4
概述Focus on the commonalities concerning data analysis in computer science and in statistics.Emphasis on both methods (statistical analysis and machine learning) and applications (marketing, finance, bio
叢書(shū)名稱Studies in Classification, Data Analysis, and Knowledge Organization
圖書(shū)封面Titlebook: Data Analysis, Machine Learning and Knowledge Discovery;  Myra Spiliopoulou,Lars Schmidt-Thieme,Ruth Janning Conference proceedings 2014 Sp
描述Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012. ?
出版日期Conference proceedings 2014
關(guān)鍵詞Applied Statistics; Classification; Clustering; Data Analysis; Prediction
版次1
doihttps://doi.org/10.1007/978-3-319-01595-8
isbn_softcover978-3-319-01594-1
isbn_ebook978-3-319-01595-8Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery影響因子(影響力)




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery影響因子(影響力)學(xué)科排名




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery被引頻次




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery被引頻次學(xué)科排名




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery年度引用




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery年度引用學(xué)科排名




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery讀者反饋




書(shū)目名稱Data Analysis, Machine Learning and Knowledge Discovery讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:26 | 只看該作者
The Most Dangerous Districts of Dortmunde this risk the offences reported by police press reports in the year 2011 (Presseportal, ., 2011) were analyzed and weighted by their maximum penalty corresponding to the German criminal code. The resulting danger index was used to rank the districts. Moreover, the socio-demographic influences on t
板凳
發(fā)表于 2025-3-22 02:28:13 | 只看該作者
地板
發(fā)表于 2025-3-22 06:47:16 | 只看該作者
5#
發(fā)表于 2025-3-22 10:50:46 | 只看該作者
How Many Bee Species? A Case Study in Determining the Number of Clustersmethods of estimating . ignore this. . can be determined by listing a number of requirements for a good clustering in the given application and finding a . that fulfils them all. The approach is illustrated by application to the problem of finding the number of species in a data set of Australasian
6#
發(fā)表于 2025-3-22 14:54:57 | 只看該作者
Two-Step Linear Discriminant Analysis for Classification of EEG Dataensional spatio-temporal data with separable covariance matrix. At first all features are divided into subgroups and linear discriminant analysis (LDA) is used to obtain a score for each subgroup. Then LDA is applied to these scores, producing the overall score used for classification. In this way w
7#
發(fā)表于 2025-3-22 18:20:50 | 只看該作者
Predictive Validity of Tracking Decisions: Application of a New Validation Criterionbetween school tracks. However, the correctness of tracking decisions usually is based on whether or not a student has kept the track she or he was initially assigned to. To overcome the neglect of misclassified students, we propose an alternative validation criterion for tracking decisions. We appl
8#
發(fā)表于 2025-3-23 00:22:47 | 只看該作者
9#
發(fā)表于 2025-3-23 01:43:11 | 只看該作者
The Alpha-Procedure: A Nonparametric Invariant Method for Automatic Classification of Multi-Dimensioon of two learning classes in a proper multi-dimensional rectifying feature space and the stepwise construction of a separating hyperplane in that space. The dimension of the space, i.e. the number of features that is necessary for a successful classification, is determined step by step using two-di
10#
發(fā)表于 2025-3-23 09:14:31 | 只看該作者
Support Vector Machines on Large Data Sets: Simple Parallel Approachesl cost due to the cubic runtime complexity is problematic for larger data sets. To mitigate this, Graf et al. (Adv. Neural Inf. Process. Syst. 17:521–528, 2005) proposed the Cascade SVM. It is a simple, stepwise procedure, in which the SVM is iteratively trained on subsets of the original data set a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定西市| 扶绥县| 定安县| 广水市| 锦屏县| 普安县| 安宁市| 石阡县| 兰考县| 炎陵县| 通海县| 南宁市| 宜春市| 雷州市| 上虞市| 柯坪县| 阳新县| 兴城市| 贵南县| 颍上县| 延边| 南雄市| 镇沅| 仙游县| 灵武市| 珲春市| 平山县| 长乐市| 高唐县| 毕节市| 芦山县| 宁南县| 巩义市| 涟水县| 山东省| 资溪县| 永泰县| 石河子市| 绥化市| 启东市| 古蔺县|