找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analysis and Pattern Recognition in Multiple Databases; Animesh Adhikari,Jhimli Adhikari,Witold Pedrycz Book 2014 Springer Internatio

[復(fù)制鏈接]
查看: 27228|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:20:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Analysis and Pattern Recognition in Multiple Databases
編輯Animesh Adhikari,Jhimli Adhikari,Witold Pedrycz
視頻videohttp://file.papertrans.cn/263/262655/262655.mp4
概述Recent research on Data Analysis and Pattern Recognition in Multiple Databases.Application of Intelligent Systems Modeling to Multiple Database Analysis.Written by experts in the field.Includes supple
叢書名稱Intelligent Systems Reference Library
圖書封面Titlebook: Data Analysis and Pattern Recognition in Multiple Databases;  Animesh Adhikari,Jhimli Adhikari,Witold Pedrycz Book 2014 Springer Internatio
描述.Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patt
出版日期Book 2014
關(guān)鍵詞Data Analysis; Intelligent Systems; Multiple Databases; Pattern Recognition
版次1
doihttps://doi.org/10.1007/978-3-319-03410-2
isbn_softcover978-3-319-37727-8
isbn_ebook978-3-319-03410-2Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Data Analysis and Pattern Recognition in Multiple Databases影響因子(影響力)




書目名稱Data Analysis and Pattern Recognition in Multiple Databases影響因子(影響力)學(xué)科排名




書目名稱Data Analysis and Pattern Recognition in Multiple Databases網(wǎng)絡(luò)公開度




書目名稱Data Analysis and Pattern Recognition in Multiple Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Analysis and Pattern Recognition in Multiple Databases被引頻次




書目名稱Data Analysis and Pattern Recognition in Multiple Databases被引頻次學(xué)科排名




書目名稱Data Analysis and Pattern Recognition in Multiple Databases年度引用




書目名稱Data Analysis and Pattern Recognition in Multiple Databases年度引用學(xué)科排名




書目名稱Data Analysis and Pattern Recognition in Multiple Databases讀者反饋




書目名稱Data Analysis and Pattern Recognition in Multiple Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:18:43 | 只看該作者
Clustering Local Frequency Items in Multiple Data Sources, based on local frequency items. A multi-branch company transacting from different branches often needs to extract global patterns from data distributed over the branches. Global decisions could be made effectively using such patterns. Thus it becomes important to cluster local frequency items in mu
地板
發(fā)表于 2025-3-22 07:27:47 | 只看該作者
5#
發(fā)表于 2025-3-22 11:22:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:17:12 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:03 | 只看該作者
Mining Calendar-Based Periodic Patterns in Time-Stamped Data,ant task. Recently, researchers have reported an algorithm for finding calendar-based periodic pattern in a time-stamped data and introduced the concept of certainty factor in association with an overlapped interval. In this chapter, we have extended the concept of certainty factor by incorporating
8#
發(fā)表于 2025-3-22 23:38:02 | 只看該作者
Measuring Influence of an Item in Time-Stamped Databases,expressing influence of items on other items. In this chapter, we introduce the notion of an overall influence of a set of items on another set of items. We also propose an extension to the notion of overall association between two items in a database. Using this notion, we have designed two algorit
9#
發(fā)表于 2025-3-23 04:44:47 | 只看該作者
Summary and Conclusions,resting as well as challenging when we are required to identify patterns and associations in multiple large data sources. While dealing with the domain of multiple large data sources, it has been observed that many patterns are specific to this domain; also some patterns are extensions of classical
10#
發(fā)表于 2025-3-23 09:01:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 11:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商都县| 榆树市| 邹平县| 吉木乃县| 稷山县| 图们市| 长汀县| 天津市| 卢龙县| 弋阳县| 桂林市| 繁昌县| 工布江达县| 岚皋县| 天祝| 三门县| 武邑县| 六枝特区| 宁津县| 孝昌县| 铁岭市| 河西区| 巨野县| 博罗县| 巴青县| 石景山区| 安吉县| 南阳市| 宜都市| 铜梁县| 普兰县| 威宁| 北川| 徐水县| 乌兰浩特市| 丽水市| 吉安市| 治县。| 揭西县| 平原县| 阜南县|