找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: angiotensin-I
51#
發(fā)表于 2025-3-30 11:51:47 | 只看該作者
Bauliche Voraussetzungen und Hygienees. To address this, we introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass without the need for holding out any images from the target scene. Our meta-calibrator is a neural network that takes as input the NeRF images and uncalibrate
52#
發(fā)表于 2025-3-30 12:29:44 | 只看該作者
W. Steggemann,C. Krabbe-Steggemanntrates consistent and substantial performance improvements over five popular benchmarks compared with state-of-the-art methods. Notably, on the CityScapes dataset, MetaAT achieves a 1.36% error rate in performance estimation using only 0.07% of annotations, marking a . improvement over existing stat
53#
發(fā)表于 2025-3-30 16:41:44 | 只看該作者
,SeA: Semantic Adversarial Augmentation for?Last Layer Features from?Unsupervised Representation Lea on 11 benchmark downstream classification tasks with 4 popular pre-trained models. Our method is . better than the deep features without SeA on average. Moreover, compared to the expensive fine-tuning that is expected to give good performance, SeA shows a comparable performance on 6 out of 11 tasks
54#
發(fā)表于 2025-3-30 22:15:18 | 只看該作者
,Unlocking the?Potential of?Federated Learning: The Symphony of?Dataset Distillation via?Deep Generaly minimizing resource utilization. We substantiate our claim with a theoretical analysis, demonstrating the asymptotic resemblance of the process to the hypothetical ideal of completely centralized training on a heterogeneous dataset. Empirical evidence from our comprehensive experiments indicates
55#
發(fā)表于 2025-3-31 04:26:37 | 只看該作者
,Rethinking Fast Adversarial Training: A Splitting Technique to?Overcome Catastrophic Overfitting,pagation, presenting an efficient solution to enhance adversarial robustness. Our comprehensive evaluation conducted across standard datasets, demonstrates that our DR splitting-based model not only improves adversarial robustness but also achieves this with remarkable efficiency compared to various
56#
發(fā)表于 2025-3-31 05:21:35 | 只看該作者
57#
發(fā)表于 2025-3-31 11:31:21 | 只看該作者
58#
發(fā)表于 2025-3-31 17:26:17 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:48 | 只看該作者
60#
發(fā)表于 2025-4-1 01:38:23 | 只看該作者
,3D Hand Pose Estimation in?Everyday Egocentric Images,, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on?4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate?the effectiveness of our approach across 2D and 3D metrics, where we beat?past methods by 7.4% – 66%. In system level comparison
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 吉木萨尔县| 宝清县| 曲阳县| 冷水江市| 扶沟县| 宁夏| 仁怀市| 聂拉木县| 马尔康县| 察隅县| 高青县| 沙雅县| 韶山市| 罗田县| 鄯善县| 泸西县| 娄烦县| 湘潭市| 南江县| 襄垣县| 永城市| 湄潭县| 伊通| 上杭县| 贵港市| 彭泽县| 龙泉市| 肥东县| 灌南县| 吉首市| 苏尼特右旗| 沁阳市| 德州市| 开封县| 班玛县| 封丘县| 瑞丽市| 韩城市| 临沭县| 闽侯县|