找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Intimidate
51#
發(fā)表于 2025-3-30 11:42:55 | 只看該作者
,SpaRP: Fast 3D Object Reconstruction and?Pose Estimation from?Sparse Views,, they often lack sufficient controllability and tend to produce hallucinated regions that may not align with users’ expectations. In this paper, we explore an important scenario in which the input consists of one or a few unposed 2D images of a single object, with little or no overlap. We propose a
52#
發(fā)表于 2025-3-30 13:15:18 | 只看該作者
MMEarth: Exploring Multi-modal Pretext Tasks for Geospatial Representation Learning, unique opportunity to pair data from different modalities and sensors automatically based on geographic location and time, at virtually no human labor cost. We seize this opportunity to create ., a diverse multi-modal pretraining dataset at global scale. Using this new corpus of 1.2 million locatio
53#
發(fā)表于 2025-3-30 18:45:49 | 只看該作者
,Evolving Interpretable Visual Classifiers with?Large Language Models,owever, vision-language models, which compute similarity scores between images and class labels, are largely black-box, with limited interpretability, risk for bias, and inability to discover new visual concepts not written down. Moreover, in practical settings, the vocabulary for class names and at
54#
發(fā)表于 2025-3-31 00:25:20 | 只看該作者
55#
發(fā)表于 2025-3-31 01:52:31 | 只看該作者
56#
發(fā)表于 2025-3-31 07:42:28 | 只看該作者
,Ferret-UI: Grounded Mobile UI Understanding with?Multimodal LLMs,y to comprehend and interact effectively with user interface (UI) screens. In this paper, we present Ferret-UI, a new MLLM tailored for enhanced understanding of mobile UI screens, equipped with ., ., and . capabilities. Given that UI screens typically exhibit a more elongated aspect ratio and conta
57#
發(fā)表于 2025-3-31 10:49:39 | 只看該作者
,Bridging the?Pathology Domain Gap: Efficiently Adapting CLIP for?Pathology Image Analysis with?Limiization across diverse vision tasks. However, its effectiveness in pathology image analysis, particularly with limited labeled data, remains an ongoing area of investigation due to challenges associated with significant domain shifts and catastrophic forgetting. Thus, it is imperative to devise effi
58#
發(fā)表于 2025-3-31 17:22:46 | 只看該作者
,AugUndo: Scaling Up Augmentations for?Monocular Depth Completion and?Estimation,tion, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use b
59#
發(fā)表于 2025-3-31 20:38:36 | 只看該作者
60#
發(fā)表于 2025-3-31 23:46:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建湖县| 永德县| 驻马店市| 广州市| 长丰县| 南京市| 常德市| 平潭县| 四子王旗| 安岳县| 扎囊县| 宜章县| 水富县| 武宣县| 广元市| 元江| 鄂托克旗| 陆良县| 原平市| 济阳县| 伊通| 寿宁县| 孟连| 九龙城区| 高唐县| 姚安县| 平定县| 泉州市| 东源县| 澄江县| 天祝| 连山| 嘉义县| 芷江| 皮山县| 滦南县| 岚皋县| 石狮市| 铜梁县| 额敏县| 阳新县|